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Abstract

This study presents an analysis of the ability of a two-parameter response surface, a multiple linear regression and a neural network
model to produce global quantitative structure–activity relationships (QSARs) to predict the toxic potency of phenols to Tetrahymena

pyriformis. The phenolic toxicity data set analysed is characterised by multiple mechanisms of toxic action. The study aimed to evaluate
the confidence that can be applied to the modelling of the differing mechanisms of action. Assessment of confidence was decided in terms
of whether the statistics for the global models reflect the ability of the QSARs to model the individual mechanisms of toxic action present
in the data set. The results showed that the global statistics only reflected the ability of models to predict the two non-covalent mech-
anisms (polar narcosis and respiratory uncoupling), with the metabolically transformed and electrophilic mechanism (pre-electrophiles
and soft electrophiles) being modelled poorly by all three model building methods. The results confirm the difficulty in modelling elec-
trophilic mechanisms of toxic action. The results also highlight the fact that this poor predictivity is often ‘hidden’ in good statistical fit of
some global models. In particular these results emphasise that for practical predictive purposes the mechanistic applicability domain is
required to give confidence to estimated toxicity values.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

It is envisaged that in silico methods, and (quantitative)
structure–activity relationships ((Q)SARs) in particular,
will play an important role in the reduction of animal test-
ing required for the risk assessment of chemical substances,
especially under new legislation such as REACH (Worth
et al., 2007). These models will, by necessity, be developed
utilising information from the numerous toxicological dat-
abases that are currently available (Cronin, 2005). Two
approaches to modelling such databases have been sug-
gested; the first of these is the development of ‘‘global”
models which (in this study) are defined as QSAR models
0045-6535/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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that cover a number of different mechanisms of action
for a given toxicological endpoint. The use of the term glo-
bal model in this study is distinct from that used to define
QSAR models based on chemicals with similar modes of
action allowing interspecies correlations (Dimitrov et al.,
2003). The second is the development of a number of
‘‘local” models, each covering a single mechanism of action
present in the database. Several publications have investi-
gated the ability of QSAR approaches to fulfil regulatory
requirements (Worth et al., 2007; Yuan et al., 2007), in
addition the OECD principles for the validation of QSARs
aim to offer guidance on this issue (OECD, 2004).

A fundamental requirement for QSAR model building is
high quality data (Cronin, 2005). A good example of a tox-
icological database with high quality potency values is that
for the ciliated protozoan Tetrahymena pyriformis for 166
phenols, first published in 1996 (Cronin and Schultz,
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1996), and then later extended to 250 compounds (Cronin
et al., 2002). Whilst limited to compounds containing a
benzene ring with a hydroxy substituent, these data reflect
the distributions of substituents observed in commercially
available industrial organic substances. Mechanisms of
action were assigned to each of the phenols in the database
by Schultz et al. (1997) utilising a series of simple structural
rules. Mechanisms were: polar narcosis, weak acid respira-
tory uncouplers, soft electrophiles, precursor to soft elec-
trophiles (pre-electrophiles), and precursor to redox
cyclers (pro-redox cyclers).

Analysis of the mechanistic makeup of the phenols data-
base published by Cronin et al. in 2002 using the rules
derived by Schultz et al. (1997) revealed that, as expected
approximately 70% (173 chemicals out of 250) of the chem-
icals act mainly by narcosis (Bradbury and Lipnick, 1990).
In addition, four other reactive electrophilic mechanisms
were also identified, these being: pre-electrophiles (27
chemicals), pro-redox (4 chemicals), respiratory uncouplers
(19 chemicals) and the generic category soft electrophiles
(27 chemicals). These reactive chemicals exhibit (acute) tox-
icity in excess of that predicted by narcosis, primarily act-
ing via non-reversible covalent interactions between the
toxic chemical and biological macromolecules (Veith and
Mekenyan, 1993; Cronin, 2003; Roberts et al., 2006). The
make up of the phenol database in terms of the relative
proportion of each type of mechanism of action is consid-
ered to be typical of both the chemical universe as a whole,
and of that available for QSAR modelling.

A number of QSAR studies have utilised the high qual-
ity, single source toxic potency values of phenols to T. pyr-

iformis (Cronin et al., 2002) to develop both local and
global models. Two studies have shown the ability of the
mechanistically interpretable ‘response surface’ analysis
to model successfully a limited set of phenols acting by
non-electrophilic mechanisms (Cronin and Schultz, 1996;
Cronin et al., 2002). The response surface model was based
on log P to model hydrophobicity and LUMO (energy of
the lowest unoccupied molecular orbital) to model electro-
philicity. These local models produced statistics of
r2 = 0.90 for a training set of 120 phenols and r2 = 0.81
for a larger set of 160 phenols. In addition, studies utilising
the extended 250 phenol data set in which five mechanisms
of action have been identified (Schultz, 1997) have pro-
duced linear and non-linear QSAR models with varying
degrees of quality (Cronin and Schultz, 1996; Devillers,
2004). These models utilised varying numbers and types
of descriptors, with only limited improvement in the result-
ing statistical relationships. Example training statistics for
the best linear and non-linear models from these studies
produced models with r2 = 0.67, and r2 = 0.82, respec-
tively, where the number of training chemicals was 200 in
both cases (both models used the same set of descriptors).
The latter results suggest that, as expected the non-linear
methods may be better at formulating global models, how-
ever no diagnostic statistics were provided for the individ-
ual mechanisms within the global model.
Previous studies have identified that chemicals belong-
ing to the pre-electrophile mechanism of action are fre-
quently found to be statistical outliers to QSARs for
acute eco-toxicity (Cronin and Schultz, 1996; Devillers,
2004). However, no study has investigated whether the glo-
bal model statistics reported for these models applies
equally to each of the mechanisms of action within the data
set. Knowledge of whether individual mechanisms of
action present in a global data set are being modelled as
well as is suggested by the global statistics is important in
being able to assign a confidence to a given prediction
made by a QSAR model. In other words, when making a
prediction of toxicity using a global model should one con-
sider whether a molecule fits into a global or local applica-
bility domain?

The aim of this study, therefore, was to investigate what
level of confidence should be applied to predictions from
each of the previously identified mechanisms of action for
the database of 250 phenol toxicity values for T. pyriformis.
The level of confidence was assessed for three common
QSAR model building methods, namely a previously
reported two-parameter response surface, a stepwise multi-
ple linear regression and neural network approaches. The
assessment of confidence was performed for individual
mechanisms to determine the real success of global
approaches for modelling.

2. Methods

2.1. Data set and toxicity values

A database of toxicity values for 250 phenolic com-
pounds was acquired from the literature (Cronin et al.,
2002). The database was split into training and validation
sets (200 and 50 compounds, respectively) as described pre-
viously (Cronin et al., 2002). All models used in the study
utilised the same 200 training and 50 validation chemicals.
This database contained five mechanisms of action classi-
fied from a previous study (Schultz et al., 1997). The num-
ber of training and validation compounds, respectively, for
each mechanism is shown in parentheses: weak acid respi-
ratory uncouplers (15:4), soft electrophiles (22:5), pre-elec-
trophiles (22:5), pro-redox cyclers (3:1) and polar narcotics
(138:35). Global models were constructed using all 200
compounds and validated using a validation set of 50 com-
pounds. The performance of each model was also assessed
in terms of its ability to fit the training data, and predict the
validation data for four of the five mechanisms of action
identified. The exception to this was the pro-redox cycling
mechanism for which insufficient compounds exist in the
data set for such an analysis to be statistically relevant.

The toxicity values were obtained from a population
growth impairment test utilising the freshwater ciliate T.

pyriformis (strain GL-C), performed following the protocol
previously described by Schultz (Schultz, 1997). The end-
point, population density, of this static 40-h assay was mea-
sured spectrophotometrically at 540 nm. Test conditions
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allow for 8–9 cell control cultures. Compounds were tested
in a range finder prior to testing in duplicate for three defin-
itive replicates. Two controls, one without chemical but
inoculated with T. pyriformis, and the other, a blank with
neither test chemical or ciliates, were used to provide a mea-
sure of the test acceptability and as a basis for interpretation
of the treatment data. Each definitive test replicate con-
sisted of six to eight different concentrations with duplicate
flasks of each concentration. Only replicates with control-
absorbency values between 0.60 and 0.75 were used in the
analysis.

The 50% growth inhibition concentration, IGC50 was
determined for each compound using the probit analysis
routine in the statistical analysis system (SAS) software
(SAS Institute, Inc). All statistical analyses were performed
on nominal concentrations; chemical analyses of concen-
trations were not performed.

2.2. Molecular descriptors

A total of 168 descriptors were calculated for each
chemical, representing the physico-chemical, structural
and topological properties that may be related to the toxi-
city of phenols to T. pyriformis (Table 1).

Logarithms of the 1-octanol/water partition coefficient
(log P) and pKa values were calculated using the ACD/
Labs software (1995, Advanced Chemistry Development
Inc, Toronto Canada). The distribution coefficient (log
D) at pH 7.35 was calculated according to (1).

log D ¼ log P � logð1þ 10pH�pKaÞ ð1Þ
The remaining descriptors were calculated with Chem-X,
version 2000.1 (Oxford Molecular Limited, Oxford, Eng-
land), TSAR, version 3.3 (Oxford Molecular Limited,
Oxford, England) and QSARis, version 1.1 (SciVision,
Academic Press, San Diego, CA).
Table 1
Physico-chemical descriptors calculated for the chemicals in this study

Software Descriptors

ACD labs Logarithm of the octanol–water partition coefficient (log
(MR), molar parachor (PAR), molar polarisability (PO

MOPAC (Chem-
X)

Energy of the highest occupied molecular orbital (HOM
nucleophilic (SN) and electrophilic (SE) superdelocalisab
on the oxygen atom of the hydroxy group, maximum p

Chem-X Volume, enclosed by isopotential surface with electrost
(EPM10); EP = 0 kcal/mol (EPZERO); EP = 10 kcal/mol
EP > 10 kcal/mol (CPOS); EP < �10 kcal/mol (CNEG); �
surface, in percents: PPOS, PNEG, PMID

TSAR Molecular volume (MVol); molecular surface area (MSA
zero order, 2nd to 6th order path, 3rd order cluster, 4th
Randic and Balaban topological indices; number of H-
nitrogen, fluorine, chlorine, bromine, iodine); group co
formation (HF); ionisation potential (IP); total energy

QSARis The sum of absolute values of the charges of a molecul
atoms in a molecule (ABSQon); ovality of a molecule;
principle quadrapole moment (Q); the largest positive c
molecule (MaxNeg); the largest positive charge in a mo
2.3. Linear regression models

The two-parameter response surface model based on log
P and LUMO was used as described previously (Cronin
et al., 2002). The stepwise multiple linear regression model
was developed using the Minitab (version 14) statistical
software. Forward stepwise regression was performed with
descriptors requiring a Fisher statistic (F) value of 10 or
greater to be considered for inclusion. Model quality was
assessed for fit based on the coefficient of determination
(r2), the coefficient of determination adjusted for the num-
ber of degrees of freedom (r2

adj), the leave-one-out cross-
validated coefficient of determination (r2

cv) and the root
mean square error (RMSE). Predictivity of the model was
assessed based on the external coefficient of determination
(q2

ext) and the RMSE for the 50 compound validation set.

2.4. Neural network model

Neural network analysis was carried out using Statistica
V6.1 (StatSoft, Inc. (2004). Forward stepwise feature selec-
tion was performed using ‘Feature Selection’ algorithms
available in the ‘Neural Network’ analysis tools. The for-
ward stepwise feature selection efficiently trains a number
of probabilistic and generalised regression neural networks
enabling the most relevant descriptors to be selected for fur-
ther neural network analysis. The number of selected
descriptors was controlled by a sampling parameter, with
a larger value resulting in fewer descriptors being included.
This value is akin to the F statistic used to control the num-
ber of selected features in the stepwise multiple linear
regression analysis. In order to reduce the descriptor pool
sufficiently this values was set to 0.005. Upon completion
the number of descriptors had been reduced from 168 to 20.

Neural network analysis was then carried out with the
intelligent problem solver algorithms within Statistica
P), negative logarithm of the ionisation constant (pKa), molar refractivity
L), surface tension (ST)
O), energy of the lowest unoccupied molecular orbital (LUMO), total
ility, maximum nucleophilic (SN

O) and electrophilic superdelocalisability
artial charge (QO) on the oxygen atom of the hydroxy group

atic potential (EP): EP = �20 kcal/mol (EPM20); EP = �10 kcal/mol
(EPP10); EP = 20 kcal/mol (EP20). Coded by EP molecular VdW surface:
10 kcal/mol < EP < 10 kcal/mol (CMID). Coded by EP molecular VdW

); lipole, Kier simple and valence-corrected molecular connectivity indices:
order path-cluster; shape flexibility index; Kappa shape indices; Weiner,

bond donor (NHDON) and acceptor (HACC) centres; atom counts (oxygen,
unts (methyl, amino, hydroxyl, nitro); molecular weight (MW); heat of
(ETOT); dipole moment (l)
e, in electrons (ABSQ); sum of absolute charges on nitrogen and oxygen
specific polarisability; magnitude of dipole moment (P), magnitude of
harge on a hydrogen atom (MaxHp); the largest negative charge in a
lecule (MaxQp); E-state indices; HE-state indices; dipolar descriptors
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using log (ICG50)�1 as the dependent variable and the 20
descriptors selected by the feature selection procedure as
independent variables. The intelligent problem solver algo-
rithm attempts to build the optimum neural network by
training and validating a number of linear, radial basis
function and three-layer perceptron neural networks. In
this study the algorithm was allowed to run for 500 cycles,
with a training set of 200 compounds (with 20 being uti-
lised as a subset for the estimation of the training error).
In addition the same 50 validation chemicals used for the
linear regression models were used to assess external pre-
dictivity. Following completion of the 500 cycles 50 neural
networks were retained for further analysis. These net-
works were selected to be diverse in terms of the type
and architecture of the networks tested during the Intelli-
gent Problem Solver routine. It was from these 50 networks
that the final network was selected, this selection was based
on the balance between training and validation error in
conjunction with perceived model complexity, with simpler
architectures being preferred.

The model quality of the final neural network was
assessed for fit using the coefficient of determination (r2)
and RMSE calculated for the training data. Predictivity
was assessed using the coefficient of determination (q2

ext)
and RMSE for the external validation set. Toxicity values,
SMILES and descriptors used in the models are available
from the corresponding author upon request.
3. Results

Toxicity data to T. pyriformis for 250 phenols were col-
lected from a single literature data source known to be of
high quality (Cronin et al., 2002). The data set consisted
of a range of phenolic compounds varying in structure,
reactivity, and hydrophobicity. Three global QSAR models
were constructed using a variety of statistical approaches
and modelling philosophies: a two-parameter response sur-
face, a forward stepwise multiple linear regression and a
neural network model.
3.1. Linear models

Eq. (2) shows the two-parameter response surface model
(taken from Cronin et al., 2002), whilst Eq. (3) shows the
multiple linear regression model developed from a stepwise
selection of the 168 calculated descriptors.

logðIGC50Þ�1 ¼ �0:24ð0:075Þ þ 0:42ð0:029Þlog D

� 0:70ð0:065ÞLUMO

r2 ¼ 0:54; r2
adj ¼ 0:54; r2

cv ¼ 0:53; RMSE ¼ 0:56 ð2Þ
logðIGC50Þ�1 ¼ 4:92ð1:04Þ þ 0:49ð0:029Þlog P � 1:25ð0:23Þ

AHardþ 0:22ð0:058ÞNHDon

þ 1:15ð0:19ÞSdssC

r2 ¼ 0:66; r2 ¼ 0:66; r2 ¼ 0:64; RMSE ¼ 0:48 ð3Þ
adj cv
where log D is the distribution coefficient calculated
according to (1), LUMO is the energy of the lowest unoc-
cupied molecular orbital, log P is the logarithm of the oct-
anol–water partition, AHard is a measure of molecular
hardness, NHDon is the number of hydrogen bond donors
and SdssC is the E-state index for a carbon atom with two
single and a double bond.

3.2. Neural network model

Stepwise feature selection resulted in the reduction of
the 168 descriptors to 20 descriptors. These 20 descriptors
were used in the Statistica ‘IPS’ routine as discussed in
the methods and from analysis of the 50 retained models
the network shown in Eq. (4) was selected as the best per-
forming network. The selected network had an architecture
corresponding to six input variables connected via four
hidden nodes to a single one output variable (6:6-4-1:1).

Three-layer perceptron 6:6-4-1:1

log P ; log D; Vol; Ovv
A;

4vPC;
3vP

rtrain ¼ 0:84; rtest ¼ 0:85; Etrain ¼ 0:11; Etest ¼ 0:10;

r2 ¼ 0:71; RMSE ¼ 0:45 ð4Þ

where log P and log D are as for the linear models, Vol is
the molecular volume, ovv

A;
4vPC and 3vP are Kier shape and

size indices.
Log P and log D were correlated; however removal of

either log P or log D diminished the quality of the networks
developed (data not shown).

4. Discussion

The characterisation and evaluation of models for in

silico toxicology will become an important aspect in the
application of alternatives to animal testing. Global in

silico QSARs offer the possibility of producing a single
model for a given toxicological endpoint that may cover
a wide range of chemical space and a number of different
mechanisms of toxic action. These global models are usu-
ally described and evaluated in terms of the complete
chemical space of the model. However for regulatory usage
it is clearly important to understand how the statistics for
these global models relate to the predictions of the individ-
ual mechanisms of toxic action within the applicability
domain. Such an understanding enables confidence to be
better assigned to the resulting predictions when the mod-
els are used in a real life scenario. This study has therefore
investigated the levels of confidence for the different mech-
anisms of toxic action present in global models developed
from a high quality toxicity data set.

In order to understand the performance of global mod-
els several different approaches were attempted in this
study. The results of these analyses (Table 2) indicate that
the neural network model produced the best overall statis-
tics for all compounds in the data set. This is demonstrated
by the highest r2 and q2

ext, coupled with lowest RMSE



Table 2
Global statistics for the QSAR models developed in this study

Number of
compounds

Response
surface

Multiple linear
regression

Neural
network

200 r2 0.54 0.66 0.71
RMSE
(training)

0.56 0.48 0.45

50 q2
ext 0.48 0.72 0.73

RMSE
(validation)

0.62 0.47 0.44

Table 3
Correlation coefficients (r2) and RMSE statistics for individual mecha-
nisms for the training data (number in parentheses indicates number of
chemicals in each mechanism)

Response
surface

Multiple linear
regression

Neural
network

Polar narcotics
(138)

r2 0.78 0.81 0.84
RMSE 0.44 0.38 0.35

Pre-electrophiles
(22)

r2 0.14 0.34 0.39
RMSE 0.99 0.78 0.77

Soft electrophiles
(22)

r2 0.18 0.17 0.25
RMSE 0.48 0.52 0.55

Pro-redox cyclers
(3)

r2 0.14 0.08 0.06
RMSE 1.12 1.46 0.92

Respiratory
uncouplers (15)

r2 0.6 0.67 0.75
RMSE 0.73 0.51 0.44
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(training) and RMSE (validation) statistics. The quality of
the stepwise multiple linear regression and neural network
models in this study are also in keeping with the results of
previous studies (Cronin et al., 2002; Devillers, 2004).
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Fig. 1. Observed versus predicted toxicity for the training data
Inspection of the statistical fit for the individual mecha-
nisms of action (Table 3) reveals that only the polar narco-
sis and respiratory uncoupling mechanisms of toxic action
were well modelled. Both of these mechanisms involve non-
covalent interactions. The electrophilic and metabolically
activated mechanisms are poorly modelled, regardless of
the model building method, thus only low confidence can
be assigned to a prediction for these mechanisms. Figs.
1–3 illustrate the poor modelling of these two mechanisms,
regardless of modelling method (response surface, multiple
linear regression and neural network, respectively). It can
be clearly seen that significant numbers of the pre-electro-
philes and soft electrophile chemicals (s and e, respec-
tively) are the worst modelled chemicals.

Analysis of the data for the test or validation set gives an
indication of the predictivity each of the models possesses
on a per mechanism basis (with the omission of the pro-
redox cycling mechanism as there is only a single chemical
of this type in the validation data). The results for the val-
idation data (Table 4) confirm that, in keeping with the
training data, all three modelling techniques were able to
predict the polar narcotic validation chemicals accurately.
In addition, the respiratory uncouplers were reasonably
predicted by both the multiple linear regression and neural
network models. In contrast the response surface model
performed significantly less well for this mechanism. All
of these results are in keeping with the fit observed for
the training data, suggesting that the two non-covalent
mechanisms can be equally well modelled by either the
multiple linear regression or neural network models.

The pre-electrophile and soft electrophile mechanisms
both have poor validation statistics however, for differing
reasons. In the case of the pre-electrophiles none of the
1.00 1.50 2.00 2.50 3.00

city

Predicted toxicity

s respiratory uncouplers soft electrophiles

used to build the two-parameter response surface model.
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Fig. 2. Observed versus predicted toxicity for the training data used to build the multiple linear regression model.
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Fig. 3. Observed versus predicted toxicity for the training data used to build the neural network model.
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modelling methods gave a low RMSE value in conjunction
with high q2

ext; these results are in keeping with those seen in
the training data. Interestingly the validation results for the
multiple linear regression and neural network models for
the soft electrophiles show both low RMSE and high q2

ext.
This is in contrast to the extremely poor fit as indicated
by the r2 and RMSE observed in the training data for this
mechanism. These contrasting results for this mechanism
suggest that the area of model space describing the soft
electrophiles is poorly modelled. The variability between
training and validation results lead to low confidence in
the ability to model these mechanisms. Such observations
are in common with other QSAR studies for electrophiles
(Cronin et al., 2002; Schultz and Yarbrough, 2004) and



Table 4
Correlation coefficients (q2

ext) and RMSE statistics for the individual
mechanisms for the validation data (number in parentheses indicates
number of chemicals in each mechanism)

Response
surface

Multiple linear
regression

Neural
network

Polar narcotics
(35)

q2
ext 0.81 0.82 0.82

RMSE 0.46 0.42 0.39

Pre-electrophiles
(5)

q2
ext 0.69 0.57 0.67

RMSE 1.42 0.96 0.90

Soft electrophiles
(5)

q2
ext 0.011 0.73 0.86

RMSE 0.64 0.36 0.23

Respiratory
uncouplers (4)

q2
ext 0.45 0.83 0.92

RMSE 0.75 0.38 0.56

OH

OH

OMe

O

OH

Nu OMe

O

O

OMe

Nu

Oxidation  
Irreversible bond 

formation

ig. 4. Example chemistry of poorly modelled pre-electrophilic compound
ethoxyhydroquinone (where Nu = nitrogen or sulphur group of a

rotein amino acid).
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the poor modelling of these compounds is ‘hidden’ if only
the global model statistics are considered.

Considering the training and validation results together
for each of the mechanisms suggests that only the non-
covalent mechanisms (polar narcosis and respiratory
uncoupling) can be modelled with any confidence (Tables
3 and 4). Mechanisms involving either metabolism (pre-
electrophiles and pro-redox cyclers) or electrophilic reactiv-
ity (soft electrophiles) are poorly modelled no matter what
the model building method. The results also highlight that
for the data set studied the multiple linear regression model
and neural network models perform almost equally as well
as one-another. In addition, the simplest response surface
model performs nearly as well for the polar narcotic chem-
icals as either of the remaining modelling methods.

These results suggest that, for this endpoint, local, indi-
vidual mechanism of action-based models may be of more
value as compared to their global counterparts. In a real-
life scenario, a prediction of toxicity may be required for
a compound of unknown mechanism of action. If either
the global multiple linear regression or neural network
models developed in this study was applied, statistics
would suggest that the resulting prediction should be of
reasonable quality. However, closer inspection of the fit
and predictivity (which would not usually be available
when developing a global model) shows that this would
only be the case if the compound of interest was a polar
narcotic or respiratory uncoupler. For example, predic-
tions for a compound where the mechanism of action
was known (or at least suspected) to be polar narcosis
could be made using any of the models, with some confi-
dence. For regulatory purposes, it is likely that, in keeping
with the OECD principles of algorithm transparency and
interpretability (Walker et al., 2003), the user will prefer
the simplest, most transparent predictive model available.
In this study, the QSAR fulfilling these criteria is the
two-parameter response surface model rather than either
of the other two equally predictive models.

One of reasons for the inability of any of the statistical
methods utilised to develop a single predictive global QSAR
model across mechanisms of toxic action, is the dominance
in the data set of compounds acting by polar narcosis. This
dominance leads to a set of descriptors being chosen that
best describe this mechanism. As noted in the discussion
of the interpretability of the model, for narcosis this leads
to descriptors for the ability of a chemical to partition
through cell membranes, typically log P or log D. In con-
trast, for the remaining electrophilic toxicity mechanisms
in T. pyriformis, partitioning through cell membranes is sig-
nificantly less important. Instead, electrophilic reactivity is
believed to be crucial to these mechanisms (Aptula et al.,
2005,2006; Aptula and Roberts, 2006; Roberts et al.,
2006,2007). The pre-electrophilic chemicals require abiotic
transformation before they exert their toxicity, it is likely
that modelling these chemicals in their ‘inactive’ forms is
responsible for the poor results. The soft electrophiles
(and the transformed pre-electrophiles) exert their toxicity
via irreversible covalent bond formation. This has been sug-
gested to involve nucleophilic attack of these chemicals by
nitrogen or sulphur containing amino acid protein residues
(Fig. 4). Unfortunately there are currently no descriptors
which are easy to calculate that accurately describe reactive
electrophilicity and hence this phenomenon is poorly char-
acterised. In addition, accurate modelling of the soft elec-
trophiles is complicated further by the fact that this
mechanism was originally defined as halo-nitro-containing
phenols that were not uncouplers (Schultz, 1997). This
group was poorly distributed across the log D and LUMO
descriptor space suggesting that it may contain phenols act-
ing by more than one electrophilic mechanism of action.
Further studies are required to elucidate the differing elec-
trophilic mechanisms that can occur for this set of phenols.

The dominance of polar narcotics in the phenol data set
investigated in this study provides an important illustration
into issues relating to data set bias. In particular, most
chemical inventories, and their associated databases, will
be biased to some mechanisms of action, and will not be
expected to have equal proportions of all mechanisms. In
this study, it is important to be aware of the bias in the data
set towards polar narcotic compounds; this bias is perhaps
one reason why the trained neural networks are less predic-
tive for the mechanisms represented by fewer compounds
in the data set. It is possible that if a data set in which suf-
ficiently large numbers of compounds of each mechanism
existed (for example more than 100 of each) then neural
network analysis might be able to produce significantly
improved results. In terms of the development of models
for regulatory purposes the mechanistic make up of the
F
m
p
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data set (in terms) of the relative proportions of chemicals
in each mechanism of toxic action will influence the final
model. This information is not captured in current
attempts to describe applicability domains which define
coverage of chemical space whilst ignoring mechanistic rel-
evance. The results of this study suggest that mechanistic
relevance and the associated model confidence for a partic-
ular mechanism are crucial for making predictions in a reg-
ulatory environment.

5. Summary

This study has investigated the ability of three global
models to model a multi-mechanism data set for the toxic-
ity of phenols to T. pyriformis. It has demonstrated that
global model statistics can be improved by the application
of more powerful (non-linear) modelling methods. How-
ever, the study has also highlighted the fact that none of
the modelling methods were able to predict, with confi-
dence, the toxicity of compounds acting by mechanisms
of action that involve covalent binding (pre-electrophiles
and soft electrophiles). The poor predictions for these com-
pounds were hidden, or disguised, by the relatively encour-
aging statistics for the global models. These results suggest
the need for definition of the domain of applicability for a
particular mechanism. In addition, the study has also dem-
onstrated that when modelling compounds within domains
based on a common mechanism of toxic action, linear
regression methods using mechanistically interpretable
descriptors perform as well as stepwise multiple linear
regression and neural network analyses.
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