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We developed a new QSAR model, based on the
optimal descriptors, calculated with simplified
molecular input line entry system. These descrip-
tors are correlated with mutagenic potential for
a training set and correlated with this end-point
for a test set. Statistical characteristics of the
model are n = 28, r 2 = 0.902, q 2 = 0.892, s =
0.554, F = 240 (training set) and n = 20, r 2 =
0.853, q 2 = 0.823, s = 0.702, F = 105 (test set).
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Aromatic amines are a class of ubiquitous environmental pollu-
tants. They are found, e.g. in tobacco smoke, diesel exhaust and
tar, and they are used for preparation of industrial products as
azo dyes, pesticides, synthetic materials or pharmaceutical prod-
ucts (1). Unfortunately, many aromatic amines are mutagens.
Thus, the biological activity in general and mutagenic potentials
of aromatic amines in particular are important pieces of informa-
tion from many points of view, e.g. ecology, human health, risk
assessment. There are a number of studies dedicated to mutage-
nicity models using quantitative structure–activity relationships
(QSAR) (2–4).

Polycyclic aromatic hydrocarbons (PAHs), in particular nitrated PAHs
(nitro-PAHs) are widespread environmental pollutants found in the
exhaust fumes of gasoline and diesel combustion engines, in cer-
tain food products as a results of incomplete combustion and in
general, in combustion source emissions (5).

Usually, QSARs are based on elucidation of molecular structure by
molecular graph. In the last decade, the representation of the
molecular structure by simplified molecular input line entry system
(SMILES) has become available from internet. The SMILES reflects
presence in molecular structure variety of influence attributes, such
as functional groups, double ⁄ triple bonds, chirality, etc. Thus,
SMILES-based QSAR analyses become a tempting alternative to
other types of QSAR based on the molecular graph.

The aim of the present report was the estimation of the ability of
optimal descriptors calculated with SMILES for the QSAR analysis
of the TA100 mutagenicity.

Method

Data
Table 1 shows structural details of the 48 nitrated polycyclic hydro-
carbons used in this study. Their mutagenic activity (log TA100, i.e.
the decimal logarithm of the mutagenic activity) is taken from (5).
Three splits into training and test sets were examined. These splits
were random but the range of end-points for these sets was almost
identical (Table 2). Canonical SMILES for this study have been gen-
erated with ACD ⁄ ChemSketcha.

The SMILES-based optimal descriptors of correlation weights (DCW)
were calculated as

DCW ¼ CW(b)CW(db)CW(Nn)CW(No)PCWðSSkÞ ð1Þ

where b is a number of brackets; db is a number of double bonds
indicated by '='; No and Nn are numbers of oxygen and nitrogen
atoms, respectively; ssk are SMILES attributes (SAk) of two ele-
ments. The element SMILES can be a symbol of the SMILES nota-
tion (for instance, 'c', 'C', 'n', 'N', =, etc.), or two symbols which are
necessary to encode an image (for instance, 'Cl', 'Br', 'N+', etc.); the
CW(x) is the correlation weight for the SMILES attribute x. Those
CWs are calculated by the Monte Carlo method optimization proce-
dure (6,7) that provides CWs values which, used in eqn (1) give a
maximum correlation coefficient between the descriptor and
log TA100. We used the range of the SMILES elements according
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Table 1: Structures of nitrated polycyclic hydrocarbons
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Table 1: (Continued)
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Table 1: (Continued)
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Table 1: (Continued)
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to ASCII codes of the symbols. Therefore, every 'AB' composition
can have only this version (not both 'AB' together with 'BA').

Simplified molecular input line entry system attributes which are
rare in the training set can lead to overtraining. However, these
may be blocked by the rule (7): if total number of the SAk is less
than LimN then CW(SAk) = 1.

By the Monte Carlo optimization of active (i.e. not blocked) SAk one
can calculate CW(SAk) producing as large as possible correlation
coefficient between the log TA100 and DCW calculated with eqn 1
for the training set. Having numerical data on the correlation
weights, one can calculate the DCW for test set and estimate pre-
dictive potential of the model.

Results and Discussion

Table 2 contains lists for three versions of the external test sets.
Table 3 shows that models for the three splits into training and test
sets are similar. For split A, best LimN is 9 (Figure 1) and for splits
B and C best LimN is 10 (Figures 2 and 3). Again, square of correla-
tion coefficients for test sets are similar. Table 4 shows that this
statistical quality is satisfactorily reproduced in series of the Monte
Carlo optimization.

As the described scheme of the QSAR analysis gives similar results
for different splits, this approach is able to be a robust tool for the
modeling.

It is also important that every SMILES attribute has a transparent
interpretation, thus the model is convenient for mechanistic elucida-
tion of the mutagenicity TA100 phenomenon.

Model of the log TA100 obtained in the first the Monte Carlo opti-
mization probe with limN = 9 is the following:

logTA100¼�269:5393ð�1:969Þþ269:2754ð�1:957Þ�DCW ð2Þ

n = 28, r 2 = 0.902, q 2 = 0.892, s = 0.554, F = 240 (training set)

Table 2: Numbers of compounds selected in the external test
sets for splits A, B and C

Split A Split B Split C

1 1 3
2 9 4
3 11 7

10 13 9
12 15 11
14 17 25
16 19 27
20 21 29
22 23 33
24 25 43
26 27
28 29
30 31
32 33
34 35
38
40
42
44
46

Table 3: Statistical quality of the models for mutagenic potency
with LimN from 0 to 10 (for splits A, B and C)

LimN Nact

Training set Test set

n r2 s F n r2 s F

Split A
1 58 28 0.9940 0.137 4396 20 0.6530 1.464 36
2 47 28 0.9915 0.163 3119 20 0.5574 1.665 28
3 40 28 0.9189 0.504 295 20 0.8152 0.853 84
4 35 28 0.9107 0.529 265 20 0.7978 0.788 72
5 32 28 0.9036 0.550 244 20 0.5789 1.168 25
6 31 28 0.9024 0.553 241 20 0.7126 0.947 49
7 26 28 0.9047 0.547 247 20 0.6466 1.063 35
8 25 28 0.9007 0.558 236 20 0.8361 0.721 93
9 24 28 0.9003 0.559 235 20 0.8803 0.637 136

10 22 28 0.9069 0.541 253 20 0.8595 0.697 110
11 20 28 0.8804 0.613 192 20 0.7060 0.958 45
12 20 28 0.8675 0.644 172 20 0.7490 0.872 58
13 19 28 0.8622 0.658 163 20 0.7478 0.875 54
14 17 28 0.8619 0.658 162 20 0.6317 1.092 31
15 17 28 0.8627 0.656 164 20 0.6065 1.150 28
Split B
1 57 33 0.9603 0.348 749 15 0.7825 0.833 47
2 47 33 0.9603 0.347 751 15 0.6525 1.148 25
3 43 33 0.9600 0.349 744 15 0.8000 0.811 53
4 39 33 0.9484 0.396 570 15 0.8189 0.755 59
5 35 33 0.9358 0.442 452 15 0.8091 0.735 55
6 29 33 0.9183 0.498 348 15 0.8531 0.771 76
7 28 33 0.9141 0.511 330 15 0.8531 0.715 76
8 27 33 0.9107 0.521 317 15 0.8333 0.722 65
9 25 33 0.9010 0.549 282 15 0.8497 0.662 74
10 23 33 0.9007 0.549 282 15 0.8714 0.628 90

11 21 33 0.8572 0.659 186 15 0.7353 0.840 37
12 21 33 0.8579 0.657 187 15 0.7175 0.871 34
13 21 33 0.8576 0.658 187 15 0.7097 0.882 32
14 20 33 0.8576 0.658 187 15 0.7306 0.851 35
15 20 33 0.8561 0.662 184 15 0.7426 0.832 38
Split C
1 58 38 0.9580 0.334 822 10 0.8074 0.950 34
2 46 38 0.9573 0.337 808 10 0.8216 0.937 37
3 43 38 0.9575 0.336 812 10 0.7937 1.015 33
4 40 38 0.9226 0.454 429 10 0.8876 0.754 65
5 37 38 0.9035 0.507 337 10 0.8011 0.992 37
6 35 38 0.9001 0.516 324 10 0.9429 0.656 134
7 35 38 0.9026 0.509 334 10 0.9172 0.740 100
8 28 38 0.8871 0.548 283 10 0.9144 0.763 93
9 26 38 0.8851 0.553 277 10 0.9420 0.722 131
10 24 38 0.8830 0.558 273 10 0.9431 0.678 133

11 22 38 0.8274 0.678 173 10 0.9215 0.706 95
12 21 38 0.8263 0.680 171 10 0.9114 0.723 83
13 21 38 0.8269 0.679 172 10 0.9115 0.726 84
14 21 38 0.8269 0.679 172 10 0.9122 0.730 85
15 21 38 0.8271 0.679 172 10 0.9138 0.727 85

The best LimN values are boldfaced.
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n = 20, r 2 = 0.853, q 2 = 0.823, s = 0.702, F = 105 (test set)

Table 5 shows experimental and calculated with eqn 2 logTA100
values. Table 6 contains correlation weights for the DCW calcula-
tion. Table 7 shows an example of the DCW calculation. Figures 4
and 5 are demonstrations of the model for training and test sets,
respectively (split A). Details for models obtained for splits B and C
are represented in the Supporting information.

Various versions of the optimal descriptors (6–14) have also been
examined in QSPR ⁄ QSAR analyses. Simplified molecular input line
entry system-based optimal descriptors have been used for: octa-
nol ⁄ water partition coefficient (10), binding affinity (11), anti-HIV-1
activity (12) and water solubility of minerals (13,14). Thus, the
described one-variable models of the mutagenic potential cannot be
the chance correlations.

Statistical characteristics of the log TA100 model described in Ref.
(5) are n = 48, r 2 = 0.9157, s = 0.551, F = 41. More typical statisti-
cal characteristics of the log TA100 models are n = 41, r 2 = 0.794
(r = 0.891) (2); n = 67, r 2 = 0.769 (r = 0.877), s = 0.708 (3); and
n = 42, r 2 = 0.901 (8). Thus, the mutagenicity model calculated with
eqn 2 is reasonably good.

Unfortunately, an external test set was not used in Ref. 5. Under
such circumstances, an adequate comparison of one-variable models
which are calculated with eqn 2 with the 10-varaible model from
Ref. 5 becomes impossible. However, a positive feature of our
model is that it has been validated with an external test set, and
this has been repeated thrice with different splits. This proves that
our model is predictive. This can be used for the evaluation of com-
pounds not used in the model building. Vice versa in the case of
the model from Ref. 5, the predictability is not examined with an
external data.

It is well known that the increase of the number of descriptors
improves statistical quality of a model that is obtained with the
multiple linear regression analysis (MLRA) for the training set (15).
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Figure 1: Split A: squares of correlation coefficients against the
LimN for training (circles) and test (triangles) sets.
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Figure 2: Split B: squares of correlation coefficients against the
LimN for training (circles) and test (triangles) sets.

Table 4: Statistics for the best models of the split A, B and C

LimN Nact Probe

Training set Test set

n r2 s F n r2 s F

Split A
9 24 1 28 0.9021 0.554 240 20 0.8533 0.702 105

2 0.8994 0.562 232 0.8884 0.614 143
3 0.8993 0.562 232 0.8992 0.596 161
Average 0.9003 0.559 235 0.8803 0.637 136

Split B
10 23 1 33 0.9013 0.548 283 15 0.8555 0.652 77

2 0.9039 0.541 291 0.8634 0.645 82
3 0.8970 0.560 270 0.8953 0.587 111
Average 0.9007 0.549 282 0.8714 0.628 90

Split C
10 24 1 38 0.8860 0.551 280 10 0.9436 0.681 134

2 0.8894 0.543 289 0.9406 0.709 127
3 0.8737 0.580 249 0.9452 0.643 138
Average 0.8830 0.558 273 0.9431 0.678 133
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Figure 3: Split C: squares of correlation coefficients against the
LimN for training (circles) and test (triangles) sets.
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However, it can be accompanied by decrease of the statistical
quality of this model for an external test set (16–18). For the toxic-
ity towards rats (16,17) and the inhibition of the protein of cho-
lesteryl ester transfer (18), the robust MLRA predictions are the
three-variable models or even two-variable models. It should be
noted that in above-mentioned studies, one-variable models which
are calculated with optimal descriptors (either based on molecular
graph or based on SMILES) are better than the MLRA models.

The described computational experiments have shown that SMILES
attributes (ssk, which contain two elements) can be a robust basis
for the predictive model of the mutagenicity, log TA100. There are
promoters of increase in the log TA100 value, as well as there are
promoters of decrease in the log TA100 value. The promoters of
the increase have correlation weights greater than 1 in all three
probes of the Monte Carlo optimization. Vice versa the promoters
of the decrease in log TA100 value have correlation weights smaller

Table 5: Mutagenic potency, experimental and calculated with eqn. 2 for the model (split A, LimN = 9)

No. SMILES DCW Experimental Calculated Experimental ) Calculated

Training set
4 [O)][N+](=O)c1ccc3ccc4c2c(ccc1c23)ccc4[N+]([O)])=O 1.0154622 4.090 3.900 0.190
5 [O)][N+](=O)c4ccc1ccc2ccc([N+]([O)])=O)c3ccc4c1c23 1.0187679 4.740 4.790 )0.050
6 [O)][N+](=O)c2ccc3c1ccc(cc1C(=O)c3c2)[N+]([O)])=O 1.0113039 2.690 2.780 )0.090
7 [O)][N+](=O)c2cc4cccc3c1ccccc1c(c2)c34 1.0111682 3.000 2.743 0.257
8 [O)][N+](=O)c1ccc2cc3ccccc3cc2c1 1.0066159 3.050 1.518 1.532
9 [O)][N+](=O)c1ccc2c3ccc(cc3Cc2c1)[N+]([O)])=O 1.0055073 1.270 1.219 0.051

11 [O)][N+](=O)c3ccc4c2cccc1cccc(c12)c4c3 1.0088536 2.600 2.120 0.480
13 [O)][N+](=O)c3ccc4c2cccc1cccc(c12)c4c3 1.0088536 2.090 2.120 )0.030
15 [O)][N+](=O)c1ccc2c3ccccc3Cc2c1 1.0026297 1.080 0.444 0.636
17 [O)][N+](=O)c2cccc1ccccc12 0.9993928 0.280 )0.427 0.707
18 [O)][N+](=O)c1ccc2C=Cc3cccc1c23 1.0048653 0.970 1.046 )0.076
19 O=[N+]([O)])c1cccc(c1)[N+]([O)])=O 0.9997135 )0.510 )0.341 )0.169
21 Cc1ccc(cc1)[N+](=O)[O)] 0.9926079 )2.100 )2.254 0.154
23 Cc1ccc(cc1[N+](=O)[O)])[N+]([O)])=O 0.9961117 )1.290 )1.311 0.021
25 Cc1c(cccc1[N+](=O)[O)])[N+]([O)])=O 0.9961117 )1.340 )1.311 )0.029
27 O=[N+]([O)])c1cc(C)cc(c1)[N+]([O)])=O 0.9997908 )0.720 )0.320 )0.400
29 O=[N+]([O))c1cc(cc(C)c1[N+]([O)])=O)[N+]([O)])=O 1.0036367 0.460 0.715 )0.255
31 O=[N+]([O)])c1cc(c(C)cc1[N+]([O)])=O)[N+]([O)])=O 1.0036367 1.120 0.715 0.405
33 O=[N+]([O)])c1c(cc(C)cc1[N+]([O)])=O)[N+]([O)])=O 1.0036367 1.010 0.715 0.295
35 [O)][N+](=O)c1cc2ccccc2cc1C 1.0009124 )0.700 )0.018 )0.682
36 [O)][N+](=O)c2cc(cc1ccccc12)[N+]([O)])=O 1.0022610 0.860 0.345 0.515
37 [O)][N+](=O)c2cccc1c2cccc1[N+]([O)])=O 1.0046195 0.910 0.980 )0.070
39 [O)][N+](=O)c3cc2c(c1c(cc(cc1C2 = O)[N+]([O)])=O)[N+]([O)])=O)c(c3)[N+]([O)])=O 1.0098337 2.460 2.384 0.076
41 [O)][N+](=O)c4cc(c1ccc2c(cc([N+]([O)])=O)c3ccc4c1c23)[N+]([O)])=O)[N+]([O)])=O 1.0140685 3.180 3.524 )0.344
43 [O)][N+](=O)c1ccc2ncccc2c1 0.9976078 )1.050 )0.908 )0.142
45 [O)][N+](=O)c1cc2c3ccccc3nc2cc1 1.0026297 )1.000 0.444 )1.444
47 [O)][N+](=O)c2c3ccccc3cc1ccccc12 1.0050876 0.260 1.106 )0.846
48 [O)][N+](=O)c4cc2c(ccc1ccccc12)c3ccccc34 1.0117534 2.210 2.901 )0.691

Test set
1 [O)][N+](=O)c1ccc3ccc4c2c(ccc1c23)c(cc4[N+]([O)])=O)[N+]([O)])=O 1.0185217 3.870 4.724 )0.854
2 [O)][N+](=O)c1cc2Cc3cc(cc(c3c2cc1)[N+]([O)])=O)[N+]([O)])=O 1.0074911 2.270 1.753 0.517
3 [O)][N+](=O)c1cc([N+]([O)])=O)c4ccc3cccc2ccc1c4c23 1.0187679 4.630 4.790 )0.160

10 [O)][N+](=O)c4ccc2c1ccccc1c3cccc4c23 1.0129803 3.310 3.231 0.079
12 [O)][N+](=O)c4ccc1ccc2cccc3ccc4c1c23 1.0129803 2.170 3.231 )1.061
14 [O)][N+](=O)c1ccc2ccccc2c1 1.0009124 0.370 )0.018 0.388
16 [O)][N+](=O)c1cc2ccc3ccccc3c2cc1 1.0066159 1.790 1.518 0.272
20 O=[N+]([O)])c1cc(cc(c1)[N+]([O)])=O)[N+]([O)])=O 1.0027256 0.720 0.470 0.250
22 O=[N+]([O)])c1cccc(C)c1[N+]([O)])=O 1.0006220 )1.260 )0.096 )1.164
24 Cc1cc(ccc1[N+](=O)[O)])[N+]([O)])=O 0.9961117 )0.630 )1.311 0.681
26 O=[N+]([O)])c1cc(C)ccc1[N+]([O)])=O 1.0006220 )1.300 )0.096 )1.204
28 O=[N+]([O)])c1c(c(C)ccc1[N+]([O)])=O)[N+]([O)])=O 1.0036367 0.080 0.715 )0.635
30 O=[N+]([O)])c1ccc(c(C)c1[N+]([O)])=O)[N+]([O)])=O 1.0036367 0.550 0.715 )0.165
32 Cc1c(cc(cc1[N+](=O)[O)])[N+]([O)])=O)[N+]([O)])=O 0.9991129 0.160 )0.503 0.663
34 [O)][N+](=O)c2ccc1ccccc1c2C 1.0022129 0.080 0.332 )0.252
38 [O)][N+](=O)c1cccc2cccc([N+]([O)])=O)c12 1.0051028 1.120 1.110 0.010
40 [O)][N+](=O)c1cc2ccc3cccc4ccc(c1)c2c34 1.0098561 2.870 2.390 0.480
42 [O)][N+](=O)c1cccc2ncccc12 0.9960932 )0.700 )1.316 0.616
44 [O)][N+](=O)c1ccc2c3ccccc3nc2c1 1.0026297 )0.300 0.444 )0.744
46 [O)][N+](=O)c2cccc3nc1ccccc1c23 1.0044901 )0.300 0.945 )1.245
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Table 6: Correlation weights for DCW calculation obtained in
three probes of the Monte Carlo optimization (split A, LimN = 9)

SMILES attributes,
(SA)

CW(SA)
in probe 1

CW(CA) in
probe 3

CW(CA) in
probe 3

ba

(001________ 1.0 1.0 1.0
(002________ 1.0 1.0 1.0
(003________ 1.0 1.0 1.0
(004________ 1.0 1.0 1.0
(005________ 1.0 1.0 1.0
(007________ 1.0 1.0 1.0
(008________ 1.0 1.0 1.0

db
=001________ 0.9928542 0.9874177 0.9879436
=002________ 0.9976385 0.9958808 0.9978417
=003________ 1.0 1.0 1.0
=004________ 1.0 1.0 1.0
=005________ 1.0 1.0 1.0

Nn
N001________ 0.9937867 0.9826527 0.9867685
N002________ 0.9962738 0.9983171 0.9896293
N003________ 1.0 1.0 1.0
N004________ 1.0 1.0 1.0

No
O002________ 0.9951094 0.9929315 0.9841075
O004________ 0.9982900 0.9903537 0.9940264
O005________ 1.0 1.0 1.0
O006________ 1.0 1.0 1.0
O008________ 1.0 1.0 1.0
O009________ 1.0 1.0 1.0

ssk

1___(_______ 1.0 1.0 1.0
2___(_______ 1.0 1.0 1.0
2___1_______ 1.0 1.0 1.0
3___(_______ 1.0 1.0 1.0
3___2_______ 1.0 1.0 1.0
4___3_______ 1.0 1.0 1.0
=___(_______ 0.9940970 0.9893757 0.9917679
=___2_______ 1.0 1.0 1.0
C___(_______ 1.0003676 1.0001318 1.0008531
C___1_______ 1.0 1.0 1.0
C___2_______ 1.0 1.0 1.0
C___3_______ 1.0 1.0 1.0
C___=_______ 1.0 1.0 1.0
N___+_______ 1.0011843 1.0006022 0.9986831
O___(_______ 1.0028353 1.0071538 1.0055170
O___)_______ 1.0027073 0.9959818 0.9956816
O___=_______ 1.0049233 0.9978888 1.0028051
[___(_______ 0.9998268 1.0000167 1.0012513
[___+_______ 0.9994688 0.9980135 0.9929854
[___)_______ 0.9984738 0.9977314 1.0018611
[___1_______ 1.0 1.0 1.0
[___4_______ 1.0 1.0 1.0
[___=_______ 1.0 1.0 1.0
[___N_______ 0.9985995 1.0019456 0.9987970
[___O_______ 0.9943171 1.0026117 0.9966329
[___[_______ 0.9969800 0.9975309 0.9976963
c___(_______ 1.0005204 1.0017735 1.0016327
c___1_______ 1.0029115 1.0045423 1.0048511
c___2_______ 1.0016101 1.0024841 1.0030810
c___3_______ 1.0005716 1.0011042 1.0010069
c___4_______ 1.0011128 1.0012849 1.0015388
c___C_______ 1.0 1.0 1.0

Table 6: (Continued)

SMILES attributes,
(SA)

CW(SA)
in probe 1

CW(CA) in
probe 3

CW(CA) in
probe 3

c___c_______ 1.0016997 1.0027042 1.0031273
n___2_______ 1.0 1.0 1.0
n___3_______ 1.0 1.0 1.0
n___c_______ 1.0 1.0 1.0

aAs all CW(b) = 1, these SMILES attributes have no influence for this
model; however, for other splits CW(b) these attributes have CW(b) „ 1.

Table 7: Example of the DCW calculation (split A, LimN = 9,
probe 1) SMILES = '[O)][N+](=O)c1ccc3ccc4c2c(ccc1c23)c(cc4[N+]
([O)])=O)[N+]([O)])=O' No. 1; DCW = 1.0185217

SA CW(SA) in probe 1 NTRN NTST

[___O_______ 0.9943171 50 37
O___)_______ 1.0027073 50 37
[___)_______ 0.9984738 50 37
[___[_______ 0.9969800 20 13
[___N_______ 0.9985995 50 37
N___+_______ 1.0011843 50 37
[___+_______ 0.9994688 50 37
[___(_______ 0.9998268 127 97
=___(_______ 0.9940970 46 32
O___=_______ 1.0049233 52 37
O___(_______ 1.0028353 33 23
c___(_______ 1.0005204 88 56
c___1_______ 1.0029115 89 66
c___1_______ 1.0029115 89 66
c___c_______ 1.0016997 154 107
c___c_______ 1.0016997 154 107
c___3_______ 1.0005716 44 23
c___3_______ 1.0005716 44 23
c___c_______ 1.0016997 154 107
c___c_______ 1.0016997 154 107
c___4_______ 1.0011128 23 17
c___4_______ 1.0011128 23 17
c___2_______ 1.0016101 58 40
c___2_______ 1.0016101 58 40
c___(_______ 1.0005204 88 56
c___(_______ 1.0005204 88 56
c___c_______ 1.0016997 154 107
c___c_______ 1.0016997 154 107
c___1_______ 1.0029115 89 66
c___1_______ 1.0029115 89 66
c___2_______ 1.0016101 58 40
3___2_______ 1.0 4 5
3___(_______ 1.0 3 1
c___(_______ 1.0005204 88 56
c___(_______ 1.0005204 88 56
c___(_______ 1.0005204 88 56
c___c_______ 1.0016997 154 107
c___4_______ 1.0011128 23 17
[___4_______ 1.0 1 1
[___N_______ 0.9985995 50 37
N___+_______ 1.0011843 50 37
[___+_______ 0.9994688 50 37
[___(_______ 0.9998268 127 97
[___(_______ 0.9998268 127 97
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than 1 in all three attempts of the Monte Carlo optimization.
Finally, there are SMILES attributes with unclear role: they have (in
the three runs of the Monte Carlo optimization) values correlation
weights greater than 1 and values of correlation weights smaller
than 1 (Table 6). Global SMILES attributes, such as, the number of
double bonds (=001, =002,...), the number of oxygen atoms (O002,
O004,...), the number of nitrogen atoms (N002, N004,...), have
improved the predictability of the model, being promoters of the
decrease in the log TA100 value (Table 6). All these fragments (or

attributes) can be useful in the understanding which molecular fea-
tures are related to the mutagenic process.

Conclusions

Optimal SMILES-based descriptors can be used to predict mutagenic
potency (TA100) of nitrated polycyclic hydrocarbons. The blocking of
rare SMILES attributes, by means of selection of the LimN, is able
to improve predictive potential of the model, i.e. improve the statis-
tical characteristics for the external test set. However, the LimN
should be selected properly: zero value of the LimN can lead to
overtraining, i.e. an excellent model for training set, but poor model
for the test set (Table 3); and vice versa if the LimN is too large
then the model can become poor for both the training and test
sets.
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