
1. Introduction

There is growing debates about quantitative structure 
- activity relationships (QSAR) models [1-5]. The 
use of QSAR for regulatory purposes is widely 
discussed at European Chemical Agency (http://echa.
europa.eu/) as well as at Organization for Economic 
Co-operation and Development (http://www.oecd.org/
dataoecd/33/37/37849783.pdf). An important aspect of 
this problem is the preliminary estimation of ecologic 
effect of various pesticides [6].  This would require an 
evaluation of the models performance, which includes 
verification of the models predictive power using a 
series of statistical tools [7,8]. The risk of a model being 
over-trained is well known: this is a situation where the 
satisfactory prediction for the training set is accompanied 
by the unsatisfactory prediction for the external test set. 

One solution accepted for validation is the use of an 
external set of compounds that have never been used to 
build up the model. 

Some authors suggest that the training set should 
be smaller than 75-85% of the original data set. We 
have experimentally assessed how this size affects 
results, considering data on carcinogenicity, which is a 
complex biochemical phenomenon. For this aim, five 
distributions into subtraining, calibration, and test sets, 
i.e., 134-134-133 where training and calibration sets 
are 66%, 170-170-61 (85%), 255-85-61 (85%), 85-255-
61 (85%), and 185-185-31 (92%), respectively, were 
examined. Substances characterized by extremely poor 
prediction of the carcinogenic potential were extracted 
during preliminary Monte Carlo experiments. These were 
inserted in subtraining sets. Using 401 chemicals, we 
evaluated the probabilistic principles of external validation 
of QSAR models for carcinogenicity (pTD50) calculated 
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To validate QSAR models an external test set is increasingly used.  However the definition of the compounds for the test set is still 
debated. We studied, co-evolutions of correlations between optimal descriptors and carcinogenicity (pTD50) for the sub-
training, calibration, and test set. Weak correlations for the sub-training set are sometimes accompanied by quite good 
correlations for the external test set. This can be explained in terms of the probability theory and can help define a suitable test 
set. The simplified molecular input line entry system (SMILES) was used to represent the molecular structure. Correlation weights 
for calculating the optimal descriptors are related to fragments of the SMILES. The statistical quality of the model is: n=170, 
r2=0.6638, q2=0.6554, s=0.828, F=331 (sub-training set); n=170, r2=0.6609, r2

pred=0.6520, s=0.825, F= 331 (calibration 
set); and n=61, r2=0.7796, r2

pred=0.7658, Rm
2=0.7448, s=0.563, F=221 (test set). The calculations were done with CORAL 

software (http://www.insilico.eu/coral/).
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with optimal descriptors based on the representation of 
the molecular structure by the simplified molecular input 
line entry system (SMILES) [7,8].

Thus, the study of measure of influence on the quality 
of prediction of the number of substances involved in the 
modeling process (by means of the optimal descriptors) 
is the aim of this work.

2. Calculating Details

2.1. Data
Experimental values for the carcinogenicity of 401 
organic compounds were taken from the Internet (at 
http://www.epa.gov/ncct/dsstox/sdf_cpdbas.html, 
Accessed 05.03.2010).  We examined substances with 
numerical data on their carcinogenicity, and a positive 
carcinogenic dose. Thus, carcinogenicity is expressed 
as the dose that induces cancer in male and female 
rats (TD50, in mg/kg body weight). These values were 
converted into mmol/kg body weight and we examined 
the pTD50 (i.e., the negative decimal logarithm of TD50) 
as the endpoint. We divided the compounds into sub-
training, calibration, and test sets. The calibration set 
is a preliminary test set: these substances are used for 
optimizing the balance of correlations in order to avoid 
overtraining.

We studied five distributions of chemicals: 134-
134-133, 170-170-61, 255-85-61, 85-255-61, and 185-
185-31. Each split was randomly composed. However 
substances with ‘atypical behavior’ (i.e., substances for 
which predicted and experimental values are strongly 
different for a series of probes of the Monte Carlo 
optimization) were inserted in the sub-training set. For 
each distribution three experiments (i.e., the Monte 
Carlo optimization) were done, repeating the random 
splitting three times. 

Taking into account the complex nature of 
carcinogenicity phenomenon, the placement of 
the ‘atypical’ substances in the training set can be 
considered as realistic conditions for the computational 
experiments.

2.2. Optimal descriptor
Optimal descriptors are calculated as the following 
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where 1Sk, 2Sk, and 3Sk are one-, two-, and three-
elements SMILES attributes; E is the total number of 
SMILES elements for a given molecular structure; 
W( 1Sk), W(2Sk), and W(3Sk) are the correlation weights 

of the attributes.   The SMILES element comprises 
one or two symbols which should be examined as one 
(e.g. ‘Cl’, ‘Br’, etc.). The threshold is a value used to 
classify attributes as either rare or active. For instance, 
if the threshold is 5, then attributes found in four (or 
fewer) SMILES structures of the training set should 
be classified as rare. The correlation weights of rare 
attributes are blocked with their values fixed at zero. 
E is the number of 1Sk,. If a SMILES is a sequence of 
element ‘ABCDE’, then the construction 1Sk,, 2Sk, and 
3Sk  can be represented as:

‘ABCDE’ → ‘A’, ‘B’,’C’, ‘D’, ‘E’ (1Sk,)
‘ABCDE’ → ‘AB’, ‘BC’,’CD’, ‘DE’ (2Sk,)                                                                          
‘ABCDE’ → ‘ABC’, ‘BCD’,’CDE’ (3Sk,)

Correlation weights (for calculation with Eq. 1) 
were defined by the Monte Carlo method optimization 
procedure using three functional sets of compounds: the 
sub-training, calibration, and test sets. Optimization is 
based on correlation coefficients between the DCW(T) 
and pTD50 for the sub-training and calibration sets. The 
target function is the following:

TF=R+R’ – abs(R-R’)*dRweight – 
              –abs(C0+C0’+C1-C1’)*dCweight                      (2)

where R and R’  are correlation coefficients between 
endpoint and optimal descriptor for the sub-training  
and calibration sets; C0 and C0’ are intercepts for the 
sub-training and calibration sets; C1 and C1’ are slopes 
for the sub-training and calibration sets.  dRweight  and  
dCweight  are empirical parameters.

Thus, the sub-training set is used to construct the 
model; the calibration set is a preliminary test of the 
model (in order to avoid overtraining), and the test set is 
used for final assessment of the model.

2.3. Co-evolution of correlations
The number of epochs (Nepoch) of the training 
(optimization) clearly influences the statistical quality of 
the model. We examined the correlation coefficients for 
the sub-training, calibration, and test sets for a range 
of the Nepoch from 1 to 50. The calculations were done 
with CORAL freeware (at http://www.insilico.eu/coral/, 
Accessed 05.05.2010).

3. Results and Discussion
Fig. 1 shows the co-evolutions of correlations for three 
random 134-134-133 splits into sub-training, calibration 
and test sets with range from 1 to 50 the number of 
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Figure 1. The 134-134-133 models: best predictions (maximum of the r2 for test set) are indicated by a grey background.
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epochs of the Monte Carlo optimization. Figs. 2-5 show 
the results for the 170-170-61, 255-85-61, 85-255-61, 
and 185-185-31, splits.

There is a reproducibility of results of the Monte 
Carlo optimization (each computational experiment is 
repeated three times). 

The statistical quality of the model on the external 
test set was used as the criterion for defining the best 
Nepoch.  According to [8], the preferable Nepoch (to obtain 
the maximum correlation coefficient for the test set) is 
10. In Figs. 1-5, the preferable value of the Nepoch is near 
10, but not exactly 10. 

An example of the co-evolutions of correlations for 
the first 170-170-61 split (this was recently examined in 
[8]),  where the preferable Nepoch is 13. Fig. 6 shows the 
correlation coefficient between the experimental pTD50 
and pTD50 calculated for the 170-170-61 split as a 
mathematical function of the threshold and Nepoch. The 
statistical quality of the model for 170-170-61 (split 1) is 
best when the threshold is 2 and there are 13 epochs of 
optimization (Fig. 6).

For the first 170-170-61 split the model for pTD50, 
obtained with the number of epochs of the training 
(optimization) Nepoch=13 and a threshold of  2, is the 
following:

pTD50 =  -0.1602(± 0.0082) +    
                    +0.0945(± 0.0004) * DCW(2)                  (3)

n=170, r2=0.6638, q2=0.6554, s=0.828, F=331 (sub-
training set)

n=170, r2=0.6609, r2
pred=0.6520, s=0.825, 

F= 331(calibration set)
n=61, r2=0.7796, r2

pred=0.7658, Rm
2=0.7448, s=0.563, 

F=221 (test set)
where n is the number of compounds in the set; r 

is the correlation coefficient;  q2  is the determination 
coefficient of the LOO-cross-validation for the sub-
training set; r2

pred is the determination coefficient of the 
LOO-cross-validation for the calibration and test sets; 
s is the standard error of estimation; and the F is the 
Fisher F-ratio.  Rm

2 is a measure of the predictability of 
the model. According to [9], a model is satisfactory if the 
Rm

2 is larger than 0.5. 
Fig. 7 shows graphically the model calculated with 

Eq. 3. 
The statistical characteristics of the model 

calculated with Eq. 3 for the test set are better than 
those of the models described in [7] (n=61, r2

(test)=0.723, 
s=0.676, F=164) and the model described in [8] (n=61, 
r2

(test)=0.7541, s=0.682, F=181).  The model calculated 
with Eq. 3 is also simpler than the above-mentioned 
SMILES-based models, because it is built up without 

the dC parameter [7,8]. This improvement reflects the 
rational selection of the Nepoch. 

The range of the threshold 1, 2, and 3 is selected 
from the following reasons. Threshold 0 is nonsense, 
because in this case, attributes which are absent in the 
sub-training set can be involved in the modeling process. 
In the case of the threshold 4, the statistical quality 
of carcinogenicity models becomes poorer. Having 
denoted this circumstance, we have described results 
obtained with threshold 1, 2, and 3. It is possible to 
carry out the described calculations with 5 or 7 splits for 
each distributions (i.e., 134-134-133, 170-170-61, etc.). 
However, in this case, statistical quality of the results will 
be approximately the same, in spite of increase of the 
number of splits.

The property/activity can be examined as a 
mathematical function of molecular structure represented 
by SMILES elements and/or attributes (combinations of 
SMILES elements). Some substances show ‘average’ 
behavior: their SMILES attributes provide the necessary 
information for adequate calculating their pTD50 (with a 
model similar to Eq. 3).  Some substances show ‘atypical’ 
behavior as regards the pTD50: their SMILES attributes 
do not take into account some important features of 
the real molecule (in real conditions) which influence 
on pTD50. It was noted above that all substances 
with ‘atypical behavior’ were defined in preliminary 
experiments and were inserted in the sub-training set. 

We suggest that overtraining in the case of CORAL 
modeling is a ‘compensation’ of the impossibility of 
involving these important features of molecules for 
the process of modeling. Under these circumstances, 
available weights contribute to improving of the statistical 
quality for the sub-training set (and maybe also for the 
calibration set), but they give misleading information for 
the external test set.

There are two phases of the Monte Carlo 
optimization. The first phase involves an increase of the 
correlation coefficient between DCW(T) and pTD50 for 
the sub-training, calibration, and test sets. The second 
phase involves an increase in this correlation coefficient 
for the sub-training and calibration sets and a decrease 
of the correlation coefficient for the external test set 
(Figs. 1-5). The critical point between these two phases 
(i.e., the specific number of iterations, Nepoch, for the 
Monte Carlo optimization) can be an indicator of the 
preferable model. 

The majority of substances show ‘average’ behavior 
(Fig. 7), and they are the basis for building up the pTD50 
model. However, there are substances with ‘atypical’ 
behavior in the sub-training set. During the first phase 
of the Monte Carlo optimization the main contribution 
for building up of the model comes from substances 
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Figure 2. The 170-170-61 models: best predictions (maximum of the r2 for test set) are indicated by a grey background.
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Figure 3. The 255-85-61 models: best predictions (maximum of the r2 for test set) are indicated by a grey background.
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Figure 4. The 85-255-61 models: best predictions (maximum of the r2 for test set) are indicated by a grey background.
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Figure 5. The 185-185-31 models: best predictions (maximum of the r2 for test set) are indicated by a grey background.
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Figure 6.  Correlation coefficient between the pTD50 experimental and pTD50 calculated with Eq. 3, as a mathematical function 
                                  of the threshold and Nepoch.

Figure 7. Experimental pTD50 values and those calculated with Eq. 3.

Table 1. Statistical quality of QSAR for carcinogenicity obtained with taking into account co-evolution of correlations for five distributions.

Distribution* Split T** Aver±disp*** Nepoch Aver±disp r2
(test) Aver±disp s(test) Aver±disp

134-134-133 1 3 2±0.82 14 11.0±2.16 0.6231 0.63±0.03 0.829 0.828±0.006
2 2 9 0.5981 0.820
3 1 10 0.6691 0.836

235-85-61 1 3 1.7±0.94 15 11.3±2.62 0.7415 0.72±0.02 0.610 0.665±0.039
2 1 10 0.7222 0.700
3 1 9 0.6900 0.686

85-235-61 1 3 1.7±0.94 23 18.0±3.55 0.7755 0.75±0.02 0.604 0.640±0.035
2 1 15 0.7259 0.688
3 1 16 0.7416 0.629

170-170-61 1 2 2.0±0.00 13 13.7±0.94 0.7796 0.75±0.02 0.563 0.617±0.039
2 2 13 0.7609 0.635
3 2 15 0.7207 0.652

185-185-61 1 2 2.0±0.00 10 12.7±2.49 0.6677 0.71±0.03 0.578 0.597±0.021
2 2 12 0.7382 0.627
3 2 16 0.7220 0.585

*) Distribution = the number of chemicals in sub training set – the number of chemicals in calibration set – the number of chemicals in test set;
**) T = threshold;
***) Aver = average, disp=dispersion.
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with ‘average’ behavior. When the informative reserve 
of the substances of ‘average’ behavior is expired, the 
overtraining starts. The essence of overtraining involves 
modification of the correlation weights of available 
attributes to improve the model for the sub-training set. 
As noted before, unfortunately this reduces the predictive 
potential of the model for the external test set.

However, the preferable Nepoch value can be obtained 
from computational experiments (Figs. 1-5). These 
results (statistical quality of the models) are reproduced 
in a series of the probes of the Monte Carlo method 
optimization. Thus, the statistical quality of the models 
is reproducible. It is best for the external test set for the 
170-170-61 model. Thus, the size of the test set is about 
15% of the total compounds. However, for all splits, 
curves in coordinates of Nepoch against the correlation 
coefficient (r2, for the external test set) show a maximum 
that is an indicator of the preferable Nepoch. In agreement 
with a previous report [8] the best Nepoch is about 10, but 
it varies for different splits into sub-training, calibration, 
and test sets. Supplementary materials section contains 
representation of Figs. 1-5 and technical details for 
model calculated with Eq. 3. 

We deem the generalized reasonable empirical 
rule for the definition of Nepoch  is the following: the 
Monte Carlo optimization should be stopped when 
0.5*[r2

(sub-training) + r2
(calibration)] ≈ 0.7, where r is correlation 

coefficient. However, this rule is formulated for models 
of the examined carcinogenicity.

4. Conclusions

Fifteen splits into sub-training, calibration, and test sets 
have been studied in QSAR analysis of carcinogenicity 
of 401 substance by means of optimal SMILES-based 
descriptors.

Analysis of co-evolution of correlations (i.e., 
correlation coefficients for sub-training, calibration, and 
test sets for each epoch of the Monte Carlo optimization) 
can be used for definition of the preferable number of 
epochs. 

In the case of models for carcinogenicity the 
preferable number of epochs can be defined by empirical 
rule: the Monte Carlo optimization should be stopped 
when 0.5*[r2

(sub-training) + r2
(calibration)] ≈ 0.7.
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