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CORrelations And Logic (CORAL at http://www.insili
co.eu/coral) is freeware aimed at establishing a
quantitative structure – property ⁄ activity relation-
ships (QSPR ⁄ QSAR). Simplified molecular input
line entry system (SMILES) is used to represent
the molecular structure. In fact, symbols in
SMILES nomenclatures are indicators of the pres-
ence of defined molecular fragments. By means of
the calculation with Monte Carlo optimization of
the so called correlation weights (contributions)
for the above-mentioned molecular fragments,
one can define optimal SMILES-based descriptors,
which are correlated with an endpoint for the
training set. The predictability of these descriptors
for an external validation set can be estimated. A
collection of SMILES-based models of anticancer
activity of 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-
naphthyridines for different splits into training
and validation set which are calculated with the
CORAL are examined and discussed. Good perfor-
mance has been obtained for three splits: the
r2 ranged between 0.778 and 0.829 for the sub-
training set, between 0.828 and 0.933 for the
calibration set, and between 0.807 and 0.931 for
the validation set.
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There are a number of systems for the establishing of the quantita-
tive structure – property ⁄ activity relationships (QSPR ⁄ QSAR) based
on different collections of molecular descriptors (1–4). The use of
large databases, especially databases that are available via the
Internet, is typical in modern natural sciences. The majority of the
Internet databases oriented on molecular properties are based on
the representation of the molecular structure by simplified molecu-
lar input line entry system (SMILES) (5–8). Thus, the development
of molecular descriptors that are calculated directly from SMILES is
an attractive scenario of the QSPR ⁄ QSAR researches. The CORrela-
tions And Logic (CORAL) software is an attempt to develop the stan-
dardized SMILES-based optimal descriptors. The aim of the present

publication is the demonstration of the ability of the CORAL freeware
to be a tool for the QSAR modelling. The numerical data on the
anticancer activity for 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyri-
dines (9) is used to demonstrate this freeware in practice.

Most popular 'classic' approach of QSAR modelling can be formu-
lated as the following: (i) definition of a model with compounds of
the training set; and (ii) checking of the model with compounds of
an external validation set. One can formulate a few questions
related to the optimization of this approach. For instance, how the
statistical quality of the model will be modified in case of another
split into the training and validation sets? How to avoid the over-
training (i.e., how avoid the situation when a good model for the
training set becomes a poor model for external substances)?
How one can estimate the probability of obtaining a satisfactory
and reliable model?

Algorithms that are used in the CORAL can give some solutions for
the above-mentioned problems from a probabilistic point of view. In
fact, CORAL is a producer of random models, which are calculated by
the Monte Carlo method. A random model can be a reasonable
predictor for an endpoint, if the statistical quality of this model (for
both the training and validation set) can be reproduced in a
sequence of attempts to build this model. Obeying to this logic, we
have examined three different splits in a cascade of attempts to
build the models for the anticancer activity.

In addition to the above-mentioned classic scheme, one can use
the balance of correlations that is available in the CORAL. The
basic idea of the balance of correlations is the split of the train-
ing set into sub-training and calibration set. The preliminary check
of the model is the function of the calibration set. This prelimin-
ary check helps to avoid the overtraining. As further step to
improve the predictability, the balance of correlations with ideal
slopes has been examined. Slopes of the cluster at the plot of
experimental versus calculated values of the endpoint on the sub-
training and calibration set are ideal if their values are as equiva-
lent as possible.

Thus, the discussion of the CORAL as a tool for QSPR ⁄ QSAR analyses
is the aim of the present work, considering the specific case study
of anticancer activity.

Method

Data
The concentration of the agent to reduce cell viability by 50%,
against Murine P388 Leukemia IC50 (9) is the biological activity
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examined in this work. The values of decimal logarithm log(1 ⁄ IC50)
or pEC50 are the endpoint that is modelled by the SMILES-based
optimal descriptors. The SMILES nomenclatures used in this work
have been generated by ACD ⁄ ChemSketch.a

Descriptors
Optimal SMILES-based descriptors (10) are calculated as the follow-
ing:

DCW(Threshold) ¼ a
XE

k¼1

W ðSk Þ þ b
XE�1

k¼1

W ðSSk Þ þ c
XE�2

k¼1

W ðSSSk Þ

ð1Þ

where Sk, SSk, and SSSk are one-, two-, and three-element SMILES
attributes; W(Sk), W(SSk), and W(SSSk) are the correlation weights
of the attributes. The SMILES element is one or two symbols that
should be examined as united ones (e.g., 'Cl', 'Br'). The threshold is
a value used for classification of attributes into two classes: rare
and active. For instance, if threshold is 5, then attributes that take
place in four (or less) SMILES of the training set should be classi-
fied as rare. The correlation weights of rare attributes are blocked:
their values are fixed equal to zero. The E is the number of Sk. If a
SMILES is a sequence of element 'ABCDE', then the construction of
Sk, SSk, and SSSk may be represented as the following:

ABCDE! A, B, C, D, EðSk Þ
ABCDE! AB, BC, CD, DEðSSk Þ
ABCDE! ABC, BCD, CDEðSSSk Þ

ð2Þ

These are some real example: if SMILES = cccCl then Sk = (c, c, c,
Cl); SSk = (cc, cc, cCl); SSSk = (ccc, ccCl).

The constants a, b, and c can be used to modify the
DCW(Threshold): they can be defined as either 0 or 1. The sim-
plest version of the descriptor takes place if a = 1, b = 0, and
c = 0. The most complex version of the descriptor takes place if
a = 1, b = 1, and c = 1. The overtraining is a main reason for
serious criticism of QSAR (11–13). In this perspective, it should be
noted that the above-mentioned version of the DCW(Threshold),
i.e., a = 1, b = 0, and c = 0, is the most robust. In other words,
in this case the probability of the overtraining is minimal.
However, in this case the statistical quality for the training ⁄

Table 1: Example of preparation S, SS, and SSS attributes.
Vacant positions are indicated by 'x' Selected SMILES is Cl.O=-
C(O)C2=CN(c1nc(c(F)cc1C2=O)N3CCC(N)C3)c4ccccc4

S
Zone-1 Zone-2 Zone-3

SS
Zone-1 Zone-2 Zone-3

SSS
Zone-1 Zone-2 Zone-3

Clxxxxxxxxxx
.xxxxxxxxxxx Clxx.xxxxxxx
Oxxxxxxxxxxx Oxxx.xxxxxxx Oxxx.xxxClxx
=xxxxxxxxxxx Oxxx=xxxxxxx =xxxOxxx.xxx
Cxxxxxxxxxxx Cxxx=xxxxxxx Oxxx=xxxCxxx
(xxxxxxxxxxx Cxxx(xxxxxxx =xxxCxxx(xxx
Oxxxxxxxxxxx Oxxx(xxxxxxx Oxxx(xxxCxxx
(xxxxxxxxxxx Oxxx(xxxxxxx (xxxOxxx(xxx
Cxxxxxxxxxxx Cxxx(xxxxxxx Oxxx(xxxCxxx
2xxxxxxxxxxx Cxxx2xxxxxxx 2xxxCxxx(xxx
=xxxxxxxxxxx =xxx2xxxxxxx Cxxx2xxx=xxx
Cxxxxxxxxxxx Cxxx=xxxxxxx Cxxx=xxx2xxx
Nxxxxxxxxxxx NxxxCxxxxxxx NxxxCxxx=xxx
(xxxxxxxxxxx Nxxx(xxxxxxx CxxxNxxx(xxx
cxxxxxxxxxxx cxxx(xxxxxxx cxxx(xxxNxxx
1xxxxxxxxxxx cxxx1xxxxxxx 1xxxcxxx(xxx
nxxxxxxxxxxx nxxx1xxxxxxx nxxx1xxxcxxx
cxxxxxxxxxxx nxxxcxxxxxxx cxxxnxxx1xxx
(xxxxxxxxxxx cxxx(xxxxxxx nxxxcxxx(xxx
cxxxxxxxxxxx cxxx(xxxxxxx cxxx(xxxcxxx
(xxxxxxxxxxx cxxx(xxxxxxx (xxxcxxx(xxx
Fxxxxxxxxxxx Fxxx(xxxxxxx cxxx(xxxFxxx
(xxxxxxxxxxx Fxxx(xxxxxxx (xxxFxxx(xxx
cxxxxxxxxxxx cxxx(xxxxxxx cxxx(xxxFxxx
cxxxxxxxxxxx cxxxcxxxxxxx cxxxcxxx(xxx
1xxxxxxxxxxx cxxx1xxxxxxx cxxxcxxx1xxx
Cxxxxxxxxxxx Cxxx1xxxxxxx cxxx1xxxCxxx
2xxxxxxxxxxx Cxxx2xxxxxxx 2xxxCxxx1xxx
=xxxxxxxxxxx =xxx2xxxxxxx Cxxx2xxx=xxx
Oxxxxxxxxxxx Oxxx=xxxxxxx Oxxx=xxx2xxx
(xxxxxxxxxxx Oxxx(xxxxxxx =xxxOxxx(xxx
Nxxxxxxxxxxx Nxxx(xxxxxxx Oxxx(xxxNxxx
3xxxxxxxxxxx Nxxx3xxxxxxx 3xxxNxxx(xxx
Cxxxxxxxxxxx Cxxx3xxxxxxx Nxxx3xxxCxxx
Cxxxxxxxxxxx CxxxCxxxxxxx CxxxCxxx3xxx
Cxxxxxxxxxxx CxxxCxxxxxxx CxxxCxxxCxxx
(xxxxxxxxxxx Cxxx(xxxxxxx CxxxCxxx(xxx
Nxxxxxxxxxxx Nxxx(xxxxxxx Nxxx(xxxCxxx
(xxxxxxxxxxx Nxxx(xxxxxxx (xxxNxxx(xxx
Cxxxxxxxxxxx Cxxx(xxxxxxx Nxxx(xxxCxxx
3xxxxxxxxxxx Cxxx3xxxxxxx 3xxxCxxx(xxx
(xxxxxxxxxxx 3xxx(xxxxxxx Cxxx3xxx(xxx
cxxxxxxxxxxx cxxx(xxxxxxx cxxx(xxx3xxx
4xxxxxxxxxxx cxxx4xxxxxxx 4xxxcxxx(xxx
cxxxxxxxxxxx cxxx4xxxxxxx cxxx4xxxcxxx
cxxxxxxxxxxx cxxxcxxxxxxx cxxxcxxx4xxx
cxxxxxxxxxxx cxxxcxxxxxxx cxxxcxxxcxxx
cxxxxxxxxxxx cxxxcxxxxxxx cxxxcxxxcxxx
cxxxxxxxxxxx cxxxcxxxxxxx cxxxcxxxcxxx
4xxxxxxxxxxx cxxx4xxxxxxx cxxxcxxx4xxx

Figure 1: Good correlations that are accompanied by different
slopes for the sub-training set and the calibration set in plots of
experimental versus calculated values of an endpoint. Classic
scheme balance of correlations balance of correlations with ideal
slopes.
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sub-training set, as rule, is modest. Hence, more complex versions
(e.g., a = 1, b = 1, and c = 0 or a = 0, b = 0, and c = 1) can also
be useful for QSPR ⁄ QSAR modelling. Any combination of the con-
stants (excepting a = 0, b = 0, and c = 0) is available for CORAL

calculations.

In the present study, SMILES elements containing one (e.g., 'c', 'C',
'=') or two symbols (e.g., 'Cl', 'Br') have been examined. In general,
SMILES elements containing larger number of symbols may be
defined.

The modelling approach examined in this study includes three steps
(14,15):

Step 1
Preparation of the list of SMILES attributes for every SMILES nota-
tion. Each SMILES attribute is a string of 12 symbols. This string is
separated into three zones. The first four symbols is the zone-1; the
second four symbols is the zone-2; and the third four symbols is
the zone-3.

There are three categories of the SMILES attributes. The first category
refers to attributes (Sk) containing sole SMILES element positioned in
the zone-1; the second category includes attributes (SSk) containing
two SMILES elements positioned in zone-1 and zone-2; the third cate-
gory includes attributes (SSSk) containing three SMILES elements posi-
tioned in zone-1, zone-2, and zone-3. Table 1 contains an example of
the preparation of a list of the attributes for a SMILES notation.

To avoid the situation when two different SMILES attributes are
representing the same molecular fragments, for instance the '(N'
and the 'N(', the elements for the SSk and SSSk are ranged
according to their ASCII codes. Furthermore, the symbol ')' is
replaced by '(', because these are representations of the same

phenomenon (i.e., branch in molecular skeleton). The same takes
place for '[' and ']'.

Step 2
Preparation of the completed list of the SMILES attributes that take
place in the work set (i.e., totally in the training ⁄ sub-training,
calibration, and test sets). The correlation weights of all SMILES
attributes are set as equal to 1.

Step 3
The optimization of the correlation weights has been done by using
the Monte Carlo method. The algorithm of the Monte Carlo optimi-
zation (15) has been used in two versions. The first is the tradi-
tional classic scheme: correlation weights, which produce as large
as possible correlation coefficient between the DCW(Threshold) and
endpoint on the training set, are calculated (10,14,15).

The second scheme, i.e., the balance of correlations is the follow-
ing: available data were split into sub-training, calibration, and
validation set. The target function (14,15) of the optimization for
this scheme is calculated as

BC ¼R þ R 0 � ABSðR � R 0Þ dR-weight ð3Þ

where R and R¢ are correlation coefficients between DCW(Thresh-
old) and endpoint for the sub-training and calibration set, respec-
tively; dR-weight is an empirical coefficient. As a rule, dR-
weight = 0.1 is a satisfactory choice.

The optimization with the target function calculated with eqn 3 can
lead to an unreliable model demonstrated in Figure 1.

To avoid this situation, one can use the modified version of the
target function, calculated as the following:

Table 2: Statistical quality of the best QSAR models for the anticancer potential calculated with CORAL with different approaches and
thresholds (T = 1–15). The n is the number of compounds in a set; R is correlation coefficient; s is root-mean-square error; F is Fischer F-ratio;
Nact is the number of active (not blocked) attributes; N111 is the number of active SMILES attributes which take place in all sets; N110 is the
number of SMILES attributes which take place in sub-training and calibration sets; N101 is the number of SMILES attributes which take place
in sub-training and validation sets; N100 is the number of SMILES attributes which are absent in the calibration and validation sets; W
(%) = 100 [N111 ⁄ (N111 + N110 + N101 + N100)], i.e., percent of SMILES attributes which are present in the sub-training, calibration, and test
set

Split T Nact

Sub-training set Calibration set Validation set

W (%) N111 N110 N101 N100n r2 s F n r2 s F n r2 s F

Classic scheme
1 14 145 75 0.8828 0.339 550 25 0.5570 0.804 29 100 0 0 145 0
2 14 145 75 0.8599 0.391 448 25 0.6763 0.675 48 100 0 0 145 0
3 10 163 75 0.8469 0.399 404 25 0.8680 0.388 151 100 0 0 163 0

Balance of correlations
1 15 103 50 0.8291 0.411 233 25 0.9740 0.496 863 25 0.5912 0.727 33 100 103 0 0 0
2 15 97 50 0.8101 0.461 205 25 0.8128 0.521 100 25 0.7805 0.504 82 100 97 0 0 0
3 14 121 50 0.7535 0.470 147 25 0.8369 0.491 118 25 0.8563 0.404 137 100 121 0 0 0

Balance of correlations with ideal slopes
1 12 139 50 0.7738 0.473 164 25 0.9323 0.499 317 25 0.8118 0.484 99 100 139 0 0 0
2 5 170 50 0.8291 0.437 233 25 0.8291 0.471 112 25 0.8041 0.482 95 100 170 0 0 0
3 4 190 50 0.8358 0.384 244 25 0.8435 0.469 124 25 0.9349 0.372 331 94 178 2 7 3
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IS ¼ BC� absðC0þ C00 þ absðC1� C10ÞÞdC-weight ð4Þ

where C0 and C0¢ are intercepts for the sub-training and calibration
set; C1 and C1¢ are slopes for the sub-training and calibration set.
The dC-weight is an empirical coefficient. Usually, a satisfactory
range for this coefficient is about 0.01–0.005.

The user of CORAL can select (i) classic scheme, (ii) balance of corre-
lations (i.e., the Monte Carlo optimization of target function calcu-
lated with eqn 3), and (iii) balance of correlations with ideal slopes
(i.e., the Monte Carlo optimization of target function calculated with
eqn 4). The present study is based on the target function calculated
with eqn 4.

Thus, the quality of the models, i.e., correlation coefficients (R), root
mean square error (s), Fischer F-ratio (F) for all sets (sub-training,
calibration, and validation) is components of a mathematical func-
tion:

Q = F (Split, DCW-version, dR-weight, dC-weight;

dstart; dprecision;Nepoch; Threshold; ApproachÞ
ð5Þ

where the different parameters for CORAL are indicated, and in par-
ticular Split is the selected separation into sub-training, calibration,
and validation sets; DCW-version is related to the selected values
of a, b, and c; dstart, dprecision are starting values of precision of the
optimization procedure by the method of division by half; Nepoch is
the number of epochs of the optimization; Approach is the selection
of classic scheme or balance of correlations or balance of correla-
tions with ideal slopes. The CORAL-method used in the present study
adopts the following scenario: splits are 1, 2, and 3; DCW-version
is (a = 1, b = 1, c = 1); dR-weight = 0.1; dC-weight = 0.025 (split
1); 0.03 (split 2 and 3); dstart = 0.1; dprecision = 0.1; Nepoch = 30;
threshold = 1,2,…,15; and approaches are (i) classic scheme, (ii)
balance of correlations, and (iii) balance of correlations with ideal
slopes.

Figure 2: Statistical quality of CORAL models for the anticancer activity obtained for three splits with threshold values of 1–15. In the
cases of split 1, the best predictions (r2 = 0.81) takes place with threshold = 12; in the case of split 2, the best prediction takes place with
threshold = 5; in the case of split 3, the best prediction takes place with threshold = 4.
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Results and Discussion

Table 2 contains the parameters indicating the statistical quality
of the models obtained by different versions of the methods
represented by generalized eqn 5. Figure 2 graphically shows the
data contained in Table 2. The dispersion of R2 is <0.005. The disper-
sion of the standard error of estimation is <0.003 (in logarithm units).

Thus, one can see that for each split, there is a threshold that pro-
vides reasonable and reliable prediction for log(1 ⁄ IC50). The thresh-
old values are 12 (for split 1), 5 (for split 2), and 4 (for split 3). The
balance of correlations (without of the ideal slopes, i.e., the target
function calculated with eqn 3) gives satisfactory models for three
splits. However, models obtained with target function calculated
with eqn 4 are better (Table 2). We note that the values of thresh-
old for models based on the target function calculated with eqns 3
and 4 are different (Table 2, Figure 2). Table S1 contains the best
models for splits 1, 2, and 3. Figure 3 graphically shows these
models.

Thus, CORAL has two phases of calculations: (i) definition of the
optimal threshold and (ii) building up a final model with the
optimal threshold. Table 2 shows results of the first-phase calcu-
lation.

The final model for split 1 (balance of correlations with ideal slopes
the threshold = 12) is the following:

pEC50 ¼ �0:1627 ð�0:0105Þ þ 0:1000 ð�0:0011ÞDCW(12) ð6Þ

n = 50, r2 = 0.7779, q2 = 0.7597, s = 0.469, F = 168 (sub-training
set);

n = 25, r2 = 0.9330, R 2
pred ¼ 0:9241, s = 0.493 (calibration set);

n = 25, r2 = 0.8067, R 2
pred ¼ 0:7737, R 2

m ¼ 0:8027 (it should be
>0.5); s = 0.487, (test set);

(r2 ) r 2
0) ⁄ r2 = 0.0000 [it should be <0.1 (16)];

(r2 ) r 020 ) ⁄ r2 = 0.0025 [it should be <0.1 (16)];

k = 1.0984 [it should be 0.85 £ k £ 1.15 (16)].

The statistical quality of the final model for split 2 (balance of
correlations with ideal slopes the threshold = 5) are the following:

pEC50 ¼ �0:0003 ð�0:0092Þ þ 0:0899 ð�0:0008ÞDCW(5) ð7Þ

n = 50, r2 = 0.8287, q2 = 0.8151, s = 0.438, F = 232 (sub-training
set);

n = 25, r2 = 0.8283, R 2
pred ¼ 0:8050, s = 0.466 (calibration set);

n = 25, r2 = 0.8160, R 2
pred ¼ 0:7797, R 2

m ¼ 0:6712 [it should be
>0.5 (17)], s = 0.468, (test set);

(r2 ) r 02 ) ⁄ r2 = 0.0386 [it should be <0.1 (16)];

(r2 ) r 020 ) ⁄ r2 = 0.0119 [it should be <0.1 (16)];

k = 1.0283 [it should be 0.85 £ k £ 1.15 (16)].
Figure 3: QSAR models for anticancer activity for three random
splits 1, 2, and 3 which are calculated with eqns 6, 7 and 8,
respectively.
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The final model for the split 3 (balance of correlations with ideal
slopes the threshold = 4) is the following:

pEC50 ¼ �0:0113 ð�0:0094Þ þ 0:0851 ð�0:0008Þ DCW(4) ð8Þ

n = 50, r2 = 0.8285, q2 = 0.8136, s = 0.392, F = 232 (sub-training set);

n = 25, r2 = 0.8475, R 2
pred ¼ 0:8210, s = 0.473 (calibration set);

n = 25, r2 = 0.9305, R2
pred ¼ 0:9186, R 2

m ¼ 0:6825 [it should be
>0.5 (17)]; s = 0.372, (test set);

(r2 ) r 2
0) ⁄ r2 = 0.0763 [it should be <0.1 (16)];

(r2 ) r 020 ) ⁄ r2 = 0.0552 [it should be <0.1 (16)];

k = 1.0660 [it should be 0.85 £ k £ 1.15 (16)].

Table S1 shows the models calculated with eqns 6, 7 and 8. One
can reproduce these results using CORAL freeware available on the
Internet.b

Conclusions

(i) One can estimate CORAL models as quite satisfactory for their sta-
tistical performance; (ii) balance of correlations with ideal slopes
gives better prediction for anticancer activity than the balance cor-
relations without of the ideal slopes; and (iii) the results obtained
with balance of correlations with ideal slopes are reproducible with
different splits.
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