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Abstract

A quantitative structure–activity relationship (QSAR) model relating electrotopological state (E-state) indices and mutagenic
potency was previously described by Cash [Mutat. Res. 491 (2001) 31–37] using a data set of 95 aromatic amines published
by Debnath et al. [Environ. Mol. Mutagen. 19 (1992) 37–52]. Mutagenic potency was expressed as the number ofSalmonella
typhimuriumTA98 revertants per nmol (LogR). Earlier work on the development of QSARs for the prediction of genotoxicity
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indicated that numerous methods could be effectively employed to model the same aromatic amines data set, namely
et al.; Maran et al. [Quant. Struct.-Act. Relat. 18 (1999) 3–10]; Basak et al. [J. Chem. Inf. Comput. Sci. 41 (2001) 671
Gramatica et al. [SAR QSAR Environ. Res. 14 (2003) 237–250]. However, results obtained from external validations o
models revealed that the effective predictivity of the QSARs was well below the potential indicated by internal validation st
(Debnath et al., Gramatica et al.). The purpose of the current research is to externally validate the model published by C
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to further explore the potential utility of using E-state sums for the prediction of mutagenic potency of aromatic amines
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1. Introduction

A principal objective in developing quantitative
structure–activity relationship (QSAR) models to
predict mutagenicity is to obtain knowledge regarding
the potential potency of substances that have not been
tested, or for which reliable experimental data are not
available. In addition, QSARs may be used to screen
new R&D chemicals for toxicological safety with
the intent to save time and money by pre-empting
the further development of hazardous chemicals.
However, the benefits of using a QSAR model for
hazard screening may only be realized once the reli-
ability, uncertainty, and predictivity of the model have
been assessed. The predictivity of a QSAR is often
evaluated using only internal performance measures
such as the coefficient of determination (r2) or internal
validation results (Q2

LOO). There is often no attempt to
validate the model using external validation methods,
which may provide a more accurate assessment of the
predictivity of a model.

In this present research, a QSAR model was devel-
oped to predict the mutagenic potency of chemicals
using data for 95 aromatic and heteroaromatic amines
published by Debnath et al.[1] and the methods
described by Cash[2]. The Debnath data set has
been previously modeled using a number of different
QSAR building techniques that utilized molecular,
constitutional, topological, and quantum mechanical
descriptors [1,3–5]. While statistics from internal
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within the purview of U.S. EPAs Office of Pollution
Prevention and Toxics (OPPT), formerly the Office of
Toxic Substances. OPPT is charged with assessing,
and if necessary, regulating all phases of the life cycle
of industrial chemicals. The office has reviewed about
42,000 premanufacture notification (PMN) chemicals
and currently receives approximately 2000 submis-
sions per year[8,9]. Because TSCA does not require
testing of these chemicals prior to submission, fast
and accurate SAR and QSAR methods are employed
by OPPT for the subsequent assessments of PMN
chemicals. If a QSAR is used in this type of regulatory
decision-making process, it is imperative that the
model be reliable as well as fast and easily employed.
In an attempt to design a model for mutagenicity which
could be used to rapidly screen large numbers of chem-
icals, while maintaining the use of simplified molecular
descriptors which describe aspects of shape and elec-
tronic configurations similar to the traditional quantum
mechanical descriptors, a method to predict mutagenic
potency was investigated[2] using Electrotopological
State (E-state) Indices to model the data set.

These descriptors encompass the same general type
of molecular and topological information, although in
a much more approximate form, as the more complex
descriptors used in previous models, but require signif-
icantly fewer computer resources. There is certainly a
trade-off between level of approximation and demand
on resources. The success of this trade-off depends on
the question to be addressed and cannot be predicted
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rom 0.89 to 0.91), the results from external valida
xercises indicate that the QSAR equations lack
ictivity for chemicals not used in the developmen

he models[1,5–7]. Additionally, the complex molecu
ar descriptors typically chosen for the previous mo
esulted in a heavy demand of computer resou
aking the models unsuitable for situations that req

apid screening of a large number of chemicals.
An example regulatory program which requires

apid assessment of chemicals to identify pote
ealth hazards is the U.S. Environmental Protec
gency’s (U.S. EPAs) New Chemicals Progra
hich was created under the Toxic Substances Co
ct (TSCA) of 1976. Under TSCA, the assessm
f new industrial chemicals and the retrospec
ssessment of an inventory of existing chemicals
priori. The E-state indices are a family of atom le
olecular descriptors that quantify the electron ac

ibility of each atom type as described by Kier
all [10]. Both a representation of the electron den
nd the accessibility of those electrons to participa

ntermolecular interactions are expressed in the E-
ndex. E-state indices may be thought of as refi

ents of valence connectivity indices, incorpora
nformation about atom types, electronic states,
onnectivities. The indices also take into account
tructural configuration of the nearest neighbors
ounding the atom and, thus, contain some shape i
ation, although in a secondary fashion. Calcula
f these sums from Simplified Molecular Input Lin
ntry System (SMILES) notation[11] is exceptionally
traightforward on even a modest desktop comp
he purpose of the current research was to validat
-state QSAR model published by Cash[2] by deriving
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internal validation statistics and assessing the model’s
predictive accuracy using an external validation set.

The E-state indices derived by Cash[2] adequately
described the training set of aromatic amines as
revealed by the statistical parameters of the model
(r = 0.88; r2

adj = 0.76). Internal validation indicated
that the QSAR model was expected to be a reliable
predictor of LogR (Q2

LOO = 0.70). However, external
validation of the model using data published by Glende
et al. [6,7] revealed that the E-state equation was a
poor predictor of LogR, consistent with the results of
previous methods developed for the prediction of muta-
genicity of aromatic and heteroaromatic amines[1,3,4].
Upon inspection of the validation results, observations
were made regarding important differences in the struc-
tural components of the training and validation sets. To
address the issue, a new QSAR was designed using
randomized sets of the combined Debnath et al.[1]
and Glende et al.[6,7] data in an attempt to produce
a more robust model and a more representative valida-
tion set. Randomization of the aromatic amines data set
resulted in better structural distribution for the training
and validation sets, but external validation results still
showed poor predictive accuracy for the model. It was
proposed that smaller sub-classes of chemicals within
the training set may have been presenting more com-
plex variations than could be appropriately captured
during model development using such a broad class
as the aromatic and heteroaromatic amines. To inves-
tigate this theory, sub-classes of the data were formed
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tore-evaluate the chemical groupings because of
unexpected trends in the data set. Additionally, a
mechanistic analysis of the process in question was
performed, which led to some interesting results. The
potential implications this may have on the model are
discussed below.

2. Materials and experimental methods

2.1. Data

Mutagenicity data for the training and validation
sets were originally published by Debnath et al.[1] and
Glende et al.[6,7]. A total of 95 chemicals were used
from the Debnath data set to create a training set for
the method and an additional 29 chemicals (Table 1)
were chosen from the Glende et al. publications to
derive the external validation set. Mutagenic potency
was reported as log reversions per nmol of compound
(LogR) in Salmonella typhimuriumTA98 with the
addition of an exogenous metabolic activation system
(S9). The LogR values reported by Debnath et al.[1]
were derived from studies conducted by a number of
different laboratories, while Glende et al.[6,7] reported
LogR values obtained from studies conducted at a
single laboratory by the publishing authors. No effort
was made to ensure that the laboratory conditions used
to derive the LogR values were comparable, and no
attempt to confirm mutagenic potency was undertaken
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.2. Data analysis

The raw data used to derive the original E-s
quation was supplied by the author and the QS
quation was recreated using the same multiple
ar regression (MLR) techniques and E-state ind
s outlined in Cash[2]. All regressions were pe

ormed using Statgraphics Plus for Windows Vers
.0. Variable selection was completed using forw
election stepwise MLR (F-to-enter = 3). Additiona
genetic algorithm method was also employed
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Table 1
Results for Eq.(1): experimental and predicted LogR values for the validation set chemicals

Chemical name Experimental LogR Predicted LogR (Eq.(1)) Log units difference Atom types present

Biphenyls
4′-n-Butyl-4-aminobiphenyl −0.74 −0.72 0.02 CH3, Csubst-aromatic

3,5-Diisopropyl-4-aminobiphenyl −1.95 −2.14 0.19 CH3, Csubst-aromatic

4′-Ethyl-4-aminobiphenyl −0.14 −0.76 0.62 CH3, Csubst-aromatic

3,5-Dimethyl-4-aminobiphenyl −1.34 −0.63 0.71 CH3, Csubst-aromatic

3,′5′-Dimethyl-4-aminobiphenyl 0.35 −0.51 0.86 CH3, Csubst-aromatic

3-n-Butyl-4-aminobiphenyl 0.17 −0.73 0.90 CH3, Csubst-aromatic

4′-i-Propyl-4-aminobiphenyl −0.72 −1.62 0.90 CH3, Csubst-aromatic

3-Ethyl-4-aminobiphenyl 0.17 −0.79 0.96 CH3, Csubst-aromatic

3,5-Diethyl-4-aminobiphenyl −1.71 −0.42 1.29 CH3, Csubst-aromatic

4′-t-Butyl-4-aminobiphenyl −1.17 −2.51 1.34 CH3, Csubst-aromatic

3′-Trifluoromethyl-4-aminobiphenyl −0.38 0.98 1.36 Csubst-aromatic, F
4′-Methyl-4-aminobiphenyl 0.64 −0.83 1.47 CH3, Csubst-aromatic

3′-Methyl-4-aminobiphenyl 0.74 −0.82 1.56 CH3, Csubst-aromatic

3-i-Propyl-4-aminobiphenyl −0.01 −1.63 1.62 CH3, Csubst-aromatic

4′-Trifluoromethyl-4-aminobiphenyl −0.55 1.25 1.80 Csubst-aromatic, F
3-t-Butyl-4-aminobiphenyl −0.39 −2.52 2.13 CH3, Csubst-aromatic

3′,5′-Ditrifluoromethyl-4-aminobiphenyl −0.78 2.03 2.81 Csubst-aromatic, F

Fluorenes
1-t-Butyl-2-aminofluorene 0.07 0.16 0.09 CH3, Csubst-aromatic

1-Ethyl-2-aminofluorene 1.85 1.94 0.09 CH3, Csubst-aromatic

7-t-Butyl-2-aminofluorene −0.20 0.13 0.33 CH3, Csubst-aromatic

7-Methyl-2-aminofluorene 1.47 1.82 0.35 CH3, Csubst-aromatic

1-n-Butyl-2-aminofluorene 2.86 2.06 0.80 CH3, Csubst-aromatic

1-i-Propyl-2-aminofluorene 2.23 1.08 1.15 CH3, Csubst-aromatic

7-Trifluoromethyl-2-aminofluorene 0.76 3.05 2.29 Csubst-aromatic, F
7-Adamantyl-2-aminofluorene −0.64 3.17 3.81 Csubst-aromatic, F

Naphthalenes
1-n-Butyl-2-aminonaphthalene −0.29 −0.60 0.31 CH3, Csubst-aromatic

1-t-Butyl-2-aminonaphthalene −2.00 −2.42 0.42 CH3, Csubst-aromatic

1-i-Propyl-2-aminonaphthalene −0.62 −1.53 0.91 CH3, Csubst-aromatic

1-Ethyl-2-aminonaphthalene 0.36 −0.68 1.04 CH3, Csubst-aromatic

variable selection, which identified the same key
descriptors as the MLR method. Internal validation of
the models was done using a leave-one-out cross vali-
datedQ2 (Q2

LOO), which was calculated using standard
statistical techniques of Eriksson et al.[13]. The E-state
QSAR equation was then subject to external validation
using a data set of structures not included in the original
training set for the model.

The external validation set was used to evaluate the
predictive accuracy of the E-state QSAR model and
the results of the external validation were evaluated
using standard statistical methods. The predictive
accuracy of the model was qualitatively evaluated by
assessing the LogR values. Also, predictive accuracy
was quantitatively evaluated by assessing the coef-
ficient of determination (r2) derived by regressing

the experimental LogR values against LogR values
predicted by the QSAR equations. The results of the
external validation were then compared to the results
from the internal validation (Q2

LOO).

3. Results and discussion

A QSAR equation was originally developed by Cash
[2] using the mutagenicity data for 95 aromatic and
heteroaromatic amines presented by Debnath et al.[1].
Although E-state sums for 34 atom types were consid-
ered for the analysis, only 17 remained after removing
those atom types that contained E-state sums of zero for
all 95 chemicals in the data set. The 17 remaining atom
types were methyl, methylene, methine, quaternary
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sp3-hybridized carbons, substituted and unsubstituted
aromatic carbons, primary amine, secondary amine,
aromatic nitrogen, nitro-group nitrogen, hydroxyl oxy-
gen, ether oxygen, nitro-group oxygens, sulfide sulfur,
and the three lightest halogens. Stepwise MLR analysis
was performed on E-state sums for all 17 atom types in
Eq. (1). For this regression, 8 of the possible 17 atom
types met the criteria for inclusion in the model: methyl
and substituted aromatic carbons, nitro and ether oxy-
gens, secondary amine and aromatic amine nitrogens,
fluorine, and chlorine. Eq.(1) here is slightly different
from that given in[2] because a few transcription errors
in experimental LogR values have been corrected

LogR = −3.85− 0.38Cmethyl + 0.84Csubst-aromatic

+0.075Onitro + 0.17Oether− 0.38Nsec-amine

+0.10F+ 0.093Naromatic-amine+ 0.10Cl

(1)

n= 95,r2 = 0.78,r2
adj = 0.76,s= 0.95,F= 37.9.

The goodness-of-fit parameters for the equation
indicated that the training set was described relatively
well by these eight E-state descriptors. Results from the
internal validation of the equation gave aQ2

LOO value
of 0.70, indicating that Eq.(1) was expected to be a
good predictor of LogR.

Eq.(1)was subjected to an external validation using
LogR values for an additional 29 aromatic amines

obtained from a subset of data published by Glende
et al. [6,7]. These differ from the original set of 95
in having an alkyl or trifluoromethyl substituent either
ortho to the amine group or else at some location in
the aromatic system distant from the amino group. The
results from this analysis indicated that the predicted
LogR values were within an order of magnitude of the
experimental value for only 55% (16/29) of the chem-
icals in the validation set (Table 1). When the LogR
values predicted by Eq.(1) were regressed against the
experimental values (Fig. 1), the resulting correlation
coefficient (r) was 0.52, which indicates that a positive
correlation exists between these variables. However,
the r2 of the regression was 0.27, indicating that the
model had poor predictive accuracy for determining
the LogR of the chemicals in the validation set.

After reviewing the results from the external
validation of Eq. (1), we noted that approximately
60% of the chemicals in the validation set contained
a biphenyl group. This high degree of representation
by one type of chemical class was considered a
potential source of structural bias in the external
validation set as compared to the training set for this
model. Additionally, many of the chemicals in the
validation set had more varied substitutions patterns
on the aromatic backbone than the molecules in the
training set. The validation set contained chemicals
with branched functional groups, such ast-butyl and
isopropyl, as well as strongly electron-withdrawing

icted L
Fig. 1. External validation of Eq.(1): pred
 ogR values vs. experimental LogR values.
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groups such as trifluoromethyl and bistrifluoromethyl
substitutions that were not represented by the training
set. We also noticed in the validation results that highly
fluorinated structures such as 3′,5′-ditrifluoromethyl-4-
aminobiphenyl were being substantially over-predicted
(experimental LogR =−0.78, predicted LogR = 2.03).
Additionally, compounds with branched side-chains,
such as 4′-i-propyl-4-aminobiphenyl (experimental
LogR =−0.72, predicted LogR =−1.62) and 4′-t-
butyl-4-aminobiphenyl (experimental LogR =−1.17,
predicted LogR =−2.51), were being substantially
under-predicted. Closer examination of the results
from the external validation revealed that only three
of the eight E-state descriptors used in Eq.(1) were
represented in the validation set, indicating that
the validation set may not have been adequately
representative of the training set.

Based on these observations, we concluded that
many compounds in the validation set may have been
outside the valid prediction space of the training set. To
test this idea, we combined and randomized the training
and validation sets to create new training and validation
sets with better structural distribution and more impor-
tantly, to obtain a more representative validation set for
the method. This operation produced new training and
validations sets, and a new E-state QSAR equation was
derived using the randomized training set. The model
was evaluated both internally and externally using the
same methods employed for the evaluation of Eq.(1).

Stepwise multiple linear regression performed on
t
s the
m ro-

matic carbons, nitro oxygens, secondary and aromatic
amine nitrogens, and fluorine. Thus, chlorine and ether
oxygen, which were included in Eq.(1), were not
determined to be statistically significant descriptors
for Eq.(2)

LogR = −3.19− 0.28Cmethyl + 0.73Csubst-aromatic

+0.055Onitro − 0.42Nsec-amine

+0.12Naromatic-amine+ 0.052F (2)

n= 95,r2 = 0.77,r2
adj = 0.75,s= 0.89,F= 48.

The goodness-of-fit parameters for Eq.(2) are com-
parable to Eq.(1)and indicate that LogR was described
relatively well by these six E-state indices. Combining
and randomizing the data sets resulted in better
structural distribution as results indicate that all six of
the atom types used to derive Eq.(2) were represented
in the structures of the validation set (Table 2). A resul-
tant r value of 0.66 indicates that there was a positive
correlation between predicted and experimental LogR
values, but anr2 value of 0.44 indicates that Eq.(2) did
not adequately predict LogR (Fig. 2). The leave-one-
outQ2 value was 0.70. The predicted LogR values were
within one order of magnitude of the published exper-
imental values for 59% (17/29) of the chemicals in the
validation set for Eq.(2). These results are comparable
with those obtained for Eq.(1) and indicate that,
although combining and randomizing the data sets did
result in a more structurally comparable training and
v ent
i to
e

icted L
he new training set resulted in Eq.(2). The following
ix atom types met the criteria for inclusion in
odel (F-to-enter = 3): methyl and substituted a

Fig. 2. External validation of Eq.(2): pred
alidation set, there was not substantial improvem
n the model’s predictive abilities when subject
xternal validation.

ogR values vs. experimental LogR values.
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Table 2
Experimental and predicted LogR values for the 29 aromatic amines used to validate Eq.(2)

Chemical name Experimental
LogR

Predicted LogR
(Eq.(2))

Log units
difference

Atom types present

Biphenyls
3′-Trifluoromethyl-4-aminobiphenyl −0.38 −0.38 0.00 Caromatic, F
4′-Ethyl-4-aminobiphenyl −0.14 −0.42 0.28 Cmethyl, Caromatic

2,4′-Diaminobiphenyl −0.92 −0.49 0.43 Caromatic

3,5-Diisopropyl-4-aminobiphenyl −1.95 −1.30 0.65 Cmethyl, Caromatic

4-Amino-4′-nitrobiphenyl 1.04 −0.05 1.09 Caromatic, Onitro

3′-Methyl-4-aminobiphenyl 0.74 −0.47 1.21 Cmethyl, Caromatic

3-t-Butyl-4-aminobiphenyl −0.39 −1.73 1.34 Cmethyl, Caromatic

Diphenylenes
4,4′-Methylenedianiline −1.60 −0.19 1.41 Caromatic

Anilines
4-Cyclohexylaniline −1.24 −1.47 0.23 Caromatic

2,4-Dimethylaniline −2.22 −1.93 0.29 Cmethyl, Caromatic

4-Chloro-2-nitroaniline −2.22 −1.85 0.37 Caromatic, Onitro

2,4-Diaminoisopropylbenzene −3.00 −2.42 0.58 Cmethyl, Caromatic

2-Chloroaniline −3.00 −2.27 0.73 Caromatic

3-Amino-alpha,alpha,alpha-trifluorotoluene −0.80 −1.76 0.96 Caromatic, F
4,4′-Methylenebis(o-isopropylaniline) −1.77 −0.67 1.10 Cmethyl, Caromatic

4-Chloro-1,2-phenylenediamine −0.49 −1.94 1.45 Caromatic

Chemicals with two fused aromatic rings
8-Aminoquinoline −1.14 −0.71 0.43 Caromatic, Naromatic

5-Aminoquinoline −2.00 −0.68 1.32 Caromatic, Naromatic

3-Aminoquinoline −3.14 −0.66 2.48 Caromatic, Naromatic

Chemicals with three fused aromatic rings
1-Ethyl-2-aminofluorene 1.85 1.92 0.07 Cmethyl, Caromatic

3-Aminocarbazole −0.48 −0.56 0.08 Caromatic, Nsec-amine

2-Amino-7-acetamidofluorene 1.18 0.60 0.58 Cmethyl, Caromatic, Onitro, Nsec-amine

7-t-Butyl-2-aminofluorene −0.20 0.57 0.77 Cmethyl, Caromatic

1,6-Diaminophenazine 0.20 0.98 0.78 Caromatic, Naromatic

1,9-Diaminophenazine 0.04 0.96 0.92 Caromatic, Naromatic

2-Aminoanthracene 2.62 0.97 1.65 Caromatic

9-Aminophenanthrene 2.98 0.95 2.03 Caromatic

3-Aminophenanthrene 3.77 1.05 2.72 Caromatic

7-Adamantyl-2-aminofluorene −0.64 2.88 3.52 Caromatic

It was surprising to us that neither Eq.(1)nor Eq.(2)
showed acceptable predictive accuracy when subject
to external validation because the internal validation
statistic (Q2

LOO) indicated that both equations would be
expected to predict LogR well. We initially theorized
that E-state sums would be suitable descriptors for
modeling the mutagenicity of this data set because they
performed well on the originaln= 95 data set[2], and
because the descriptors were thought to encompass
many of the electronic characteristics that influence
the proposed mechanism of action for aromatic and
heteroaromatic amines. The mutagenicity of aromatic

amines is thought to be related to the formation
of a reactive intermediate that forms via oxidation
of the amine to a functionalized hydroxylamine,
which is then converted to a cation intermediate, as
shown inFig. 3. Mutagenicity of aromatic amines is
believed to be related to the stability of this reactive
intermediate.

Based on results from the validation of
Eqs. (1) and (2), we considered the possibility
that the original grouping of aromatic and heteroaro-
matic amines may have been too broad of a chemical
class for modeling this endpoint. There may have been



G.G. Cash et al. / Mutation Research 585 (2005) 170–183 177

Fig. 3. Mutagenicity of aromatic amines and the formation of a reactive intermediate that forms via oxidation of the amine to a functionalized
hydroxylamine and converted to a cation intermediate.

sub-trends in the data sets specific to smaller chemical
classes whose contributions could not be appropriately
captured during model development when using
such a broad chemical class as the aromatic and
heteroaromatic amines. To investigate this hypothesis,
we subdivided the data sets into smaller chemical
classes based on structural backbone (e.g., biphenyls,

naphthalenes, fluorenes), and generated new QSARs
for each of the chemical sub-classes.

Results from dividing the Debnath et al.[1] and
Glende et al.[6,7] data sets into smaller structure-
specific classes are presented inTable 3. The results
indicate that further subdividing the data set gener-
ally did not improve the predictiveness of the models

Table 3
Comparison of experimental LogR values and E-state sums for five diaminophenazine isomers

Structure Chemical name Experimental LogR Eq.(1) Eq.(2) Atom type E-state sums

Csubst-aromatic Naromatic

2,7-Diamino phenazine 3.97 0.90 1.26 4.7 9.0

2,8-Diamino phenazine 1.12 0.89 1.25 4.7 9.0

1,7-Diamino phenazine 0.75 0.73 1.12 4.4 9.0

1,6-Diamino phenazine 0.20 0.57 0.98 4.3 8.9

0.04
1,9-Diamino phenazine
 0.54 0.96 4.2 8.9
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when the results were compared to those for the val-
idation of Eqs.(1) and (2). In the external validation
of the structure-specific QSARs, we noted that the
mutagenicity of one particular chemical, 7-adamantyl-
2-aminofluorene, was consistently and dramatically
over-predicted by the models. Removal of this chemical
from the validation sets resulted in substantial improve-
ments in ther2 values, though true predictiveness of
these models may not have been accurately character-
ized because of the small number of chemicals used for
the validations. Larger data sets for these sub-classes
of aromatic amines need to be assessed in order to
properly determine if these class-specific models are
appropriate.

With respect to the specific problem with 7-
adamantyl-2-aminofluorene, we considered the
possibility that the steric bulk of the adamantyl group
interferes with passive transport across biological
membranes, leading to a much lower experimental
LogR than predicted. Using a computer program devel-
oped to predict this effect by modeling the effective
cross-sectional diameters of molecules[14], we found,
however, that 7-adamantyl-2-aminofluorene has about
the same effective cross-sectional diameter as the other
substituted aminofluorenes. The reason for this is, the
adamantyl group extends almost parallel to the longest
axis of the fluorene nucleus, so it has the effect of
making the molecule longer and thicker, but it does not
substantially increase the minimum size of the middle
dimension. This middle dimension is the effective
d ugh
w

op-
m was
n tate
s ruc-
t ther
a the
b f the
c teric
e the
r les
i nes.
E the
n and,
t ree-
d rm
a of

the molecule during induction of mutagenicity, then
this would be a characteristic influencing mutagenicity
that traditional E-state sums cannot capture.

Re-grouping the data set by similar chemical back-
bone also revealed structural isomers in the data sets
that were noted as having vastly different LogR val-
ues within a narrow chemical class (Table 4). An
example is the diaminophenazines. These positional
isomers contain identical chemical moieties, but the
arrangement of the atoms on the phenazine backbone
is slightly different, as shown in the structures presented
in Table 3. The experimental LogR values for the five
diaminophenazine isomers span almost four orders of
magnitude, ranging from 0.04 to 4.0. However, they
possess identical atom types leading to similar E-state
sums because the positional variations of the functional
groups on the aromatic backbone do not drastically
affect the calculation of the E-state sums. Therefore, it
might be expected that models based solely on E-state
sums would predict that these five structural isomers
would have similar LogR values, and this is indeed the
case. Similar trends also were noted for other classes
of positional isomers.

Looking at these results, we concluded that E-state
sums may not be able to characterize the observed
differences in mutagenicity of these isomers because
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factors other than electron accessibility and functional
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Table 4
Results of grouping the randomized data set by chemical backbone

Training set Validation set

Description of subseta N Equation Training
set,R2

adj

N Percentage of
predictions within
one log unit

Validationb

All chemicals with fused rings 43 −2.34− 0.32Cmethyl+ 0.64Csubst-aromatic

− 0.53Namine

0.66 14 50 (7/14) 0.31, 0.71

Chemicals without fused ring
systems

52 −4.38 + 0.13Caromatic+ 0.36Csubst-aromatic

+ 0.34CQuat+ 0.070Onitro + 0.12Oether

+ 0.088F + 0.19Cl

0.56 16 50 (8/16) 0.26

All chemicals with≥3
aromatic rings (e.g.,
anthracenes, pyrenes)

33 −1.189− 0.25Cmethyl

+ 0.47Csubst-aromatatic0.082Onitro

− 0.59Namine

0.49 10 50 (5/10) 0.11, 0.62

a Subsets containing exactly 2 (n= 9) or 4 (n= 9) fused aromatic rings are not presented because the training subsets were considered too
small to provide a reliable equation. The subset containing exactly three aromatic rings (n= 25) was not included because the resulting model
included only one E-state descriptor. Subsets containing only biphenyls (n= 28) or only anilines (n= 18) did not have a statistically significant
correlation between LogR and E-state sums and are, therefore, not included in the table.

b An r2 value for the entire validation set is the first value presented. Anr2 value for the validation set with one chemical (7-adamantyl-2-
aminofluorene) removed are presented second. This chemical was removed from the analysis because it possesses large, bulky, and non-flexible
substituents that may have affected mutagenicity in a manner not likely to be described by E-state sums. The above E-state models severely
over-predicted LogR for this chemical and, consequently, drastically affected ther2 value of the validation set.

longer residence time in the body, thereby increasing
the probability for reactions with DNA. The structures
presented for the sub-class of phenazines inTable 3
support these proposed influences.

The most highly mutagenic chemical in the table
is 2,7-diaminophenazine. In examining this chemical
more closely, it is observed that there is a high degree
of symmetry in the molecule and the orientation of the
amine groups on the aromatic backbone of the molecule
effectively stabilize the resulting carbocation formed
upon activation, as shown inFig. 4. For the least muta-
genic compound, 1,9-diaminophenazine, no resulting

stabilized resonance form of the active intermediate
may be drawn. We note that the mutagenic potency of
2,7-diaminophenazine is greatly underpredicted by all
models that have been developed for this data set[1–5],
not just the E-state models.

Finally, it should be noted that the phenazines con-
taining the amino groups in the 2, 7, and 8 positions
on the rings of the molecule are more mutagenic based
on the experimental values. This could reflect a steric
relationship necessary for intercalation in the DNA,
which is not accounted for using only E-states in the
QSAR analysis.

Fig. 4. High degree of symmetry in the molecule and the orientation of the amine groups on the aromatic backbone of the molecule effectively
stabilize the resulting carbocation formed upon activation.
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Table 5
Chemicals used in the training and validation sets and their experimental and predicted LogR valuesa

Chemical Chemical class Experimental
LogR

Predicted LogR
(Eq.(1))

Predicted LogR
(Eq.(2))

Eq.(1): training set/Eq.(2): training set
4-Ethoxyaniline Aniline −2.30 −2.35 −2.54
2-Amino-5-nitrophenol Aniline −2.52 −2.58 −2.29
4-Chloroaniline Aniline −2.52 −2.58 −2.12
3-Methoxy-4-methylaniline Aniline −1.96 −2.12 −2.25
2-Methoxy-5-methylaniline Aniline −2.05 −2.22 −2.32
4-Bromoaniline Aniline −2.70 −2.51 −1.83
2,4-Difluoroaniline Aniline −2.70 −2.51 −2.91
2,4-Diamino-n-butylbenzene Aniline −2.70 −2.51 −1.77
4-Methoxy-2-methylaniline Aniline −3.00 −3.19 −2.22
2-Amino-4-chlorophenol Aniline −3.00 −3.19 −2.52
2,5-Dimethylaniline Aniline −2.40 −2.64 −1.95
4-Amino-2′-nitrobiphenyl Aniline −0.92 −0.42 −0.43
2,6-Dichloro-1,4-phenylenediamine Aniline −0.69 −1.28 −1.96
2,4-Dinitroaniline Aniline −2.00 −1.13 −1.57
2-Bromo-4,6-dinitroaniline Aniline −0.54 −1.44 −1.51
2,4,5-Trimethylaniline Aniline −1.32 −2.29 −1.55
4-Fluoroaniline Aniline −3.32 −2.34 −2.32
2-Amino-4-methylphenol Aniline −2.10 −3.19 −2.52
4-Phenoxyaniline Aniline 0.38 −0.93 −1.46
4,4′-Ethylenebis(aniline) Aniline −2.15 −0.26 −0.09
9-Aminoanthracene Anthracene 0.87 0.83 0.86
1-Aminoanthracene Anthracene 1.18 0.86 0.95
3,3′-Dichlorobenzidine Biphenyl 0.81 0.84 −0.20
3,3′-Dimethylbenzidine Biphenyl 0.01 −0.14 0.21
Benzidine Biphenyl −0.39 −0.64 −0.41
2-Aminobiphenyl Biphenyl −1.49 −1.24 −0.93
3-Amino-3′-nitrobiphenyl Biphenyl −0.55 −0.23 −0.27
3,3′-Dimethoxybenzidine Biphenyl 0.15 0.48 −0.78
3,4′-Diaminobiphenyl Biphenyl 0.20 0.57 −0.42
2-Amino-4′-nitrobiphenyl Biphenyl −0.62 −0.16 −0.20
2-Amino-3′-nitrobiphenyl Biphenyl −0.89 −0.35 −0.37
3-Amino-2′-nitrobiphenyl Biphenyl −1.30 −0.71 −0.49
3,3′-Diaminobiphenyl Biphenyl −1.30 −0.71 −0.47
2,2′-Diaminobiphenyl Biphenyl −1.52 −0.90 −0.64
3-Amino-4′-nitrobiphenyl Biphenyl 0.69 −0.05 −0.11
4-Aminobiphenyl Biphenyl −0.14 −1.12 −0.83
4-Amino-3′-nitrobiphenyl Biphenyl 1.02 −0.15 −0.20
1-Aminocarbazole Carbazole −1.04 −0.57 −0.65
4-Aminocarbazole Carbazole −1.42 −0.58 −0.66
2-Aminocarbazole Carbazole 0.60 −0.46 −0.55
6-Aminochrysene Chrysene 1.83 3.08 2.79
4-Aminophenyl-ether Diphenyl ether −1.14 −1.18 −1.46
4-Aminophenyl disulfide Diphenyl sulfide −1.03 −1.07 −0.79
4,4′-Diaminophenyl sulfide Diphenyl sulfide 0.31 −0.54 −0.33
4,4′-Methylenebis(o-fluoroaniline) Diphenylene 0.23 −0.50 −1.25
4,4′-Methylenebis(o-ethylaniline) Diphenylene −0.99 0.29 0.59
8-Aminofluoranthene Fluoranthene 3.80 3.46 3.13
1-Aminofluoranthene Fluoranthene 3.35 3.32 3.00
3-Aminofluoranthene Fluoranthene 3.31 3.38 3.05
2-Aminofluoranthene Fluoranthene 3.23 3.41 3.08
7-Aminofluoranthene Fluoranthene 2.88 3.33 3.02
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Table 5 (Continued)

Chemical Chemical class Experimental
LogR

Predicted LogR
(Eq.(1))

Predicted LogR
(Eq.(2))

4-Aminofluorene Fluorene 1.13 1.36 1.32
2-Bromo-7-aminofluorene Fluorene 2.62 2.36 2.18
2-Aminofluorene Fluorene 1.93 1.48 1.40
3-Aminofluorene Fluorene 0.89 1.46 1.40
2-Hydroxy-7-aminofluorene Fluorene 0.41 1.20 1.18
2-Amino-7-nitrofluorene Fluorene 3.00 2.15 1.79
1-Aminofluorene Fluorene 0.43 1.41 1.36
2,7-Diaminofluorene Fluorene 0.48 1.92 1.79
2-Amino-1-nitronaphthalene Naphthalene −1.17 −0.89 −0.84
2-Aminonaphthalene Naphthalene −0.67 −1.10 −0.81
1-Aminonaphthalene Naphthalene −0.60 −1.16 −0.87
1-Amino-4-nitronaphthalene Naphthalene −1.77 −0.59 −0.58
1-Aminophenanthrene Phenanthrene 2.38 0.99 0.99
2-Aminophenanthrene Phenanthrene 2.46 1.08 1.07
2-Aminophenazine Phenazine 0.55 0.57 0.98
1,7-Diaminophenazine Phenazine 0.75 0.73 1.12
2,8-Diaminophenazine Phenazine 1.12 0.89 1.25
1-Aminophenazine Phenazine −0.01 0.35 0.80
2,7-Diaminophenazine Phenazine 3.97 0.90 1.26
4-Aminopyrene Pyrene 3.16 3.24 2.94
2-Aminopyrene Pyrene 3.50 3.36 3.04
1-Aminopyrene Pyrene 1.43 3.29 2.98
6-Aminoquinoline Quinoline −2.67 −1.05 −0.61

Eq.(1): training set/Eq.(2): validation set
3-Amino-alpha,alpha,alpha-trifluorotoluene Aniline −0.80 −0.70 −1.76
2,4-Diaminoisopropylbenzene Aniline −3.00 −3.19 −2.42
2-Chloroaniline Aniline −3.00 −3.19 −2.27
2,4-Dimethylaniline Aniline −2.22 −2.61 −1.93
4-Chloro-2-nitroaniline Aniline −2.22 −2.61 −1.85
4-Cyclohexylaniline Aniline −1.24 −1.86 −1.47
4-Chloro-1,2-phenylenediamine Aniline −0.49 −1.83 −1.94
2-Aminoanthracene Anthracene 2.62 2.36 0.97
2,4′-Diaminobiphenyl Biphenyl −0.92 −0.42 −0.49
4-Amino-4′-nitrobiphenyl Biphenyl 1.04 0.02 −0.05
3-Aminocarbazole Carbazole −0.48 −0.47 −0.56
4,4′-Methylenedianiline Diphenylene −1.60 −0.38 −0.19
4,4′-Methylenebis(o-isopropylaniline) Diphenylene −1.77 −0.59 −0.67
2-Amino-7-acetamidofluorene Fluorene 1.18 0.86 0.60
9-Aminophenanthrene Phenanthrene 2.98 0.94 0.95
3-Aminophenanthrene Phenanthrene 3.77 1.05 1.05
1,6-Diaminophenazine Phenazine 0.20 0.57 0.98
1,9-Diaminophenazine Phenazine 0.04 0.54 0.96
8-Aminoquinoline Quinoline −1.14 −1.18 −0.71
5-Aminoquinoline Quinoline −2.00 −1.13 −0.68
3-Aminoquinoline Quinoline −3.14 −1.11 −0.66

Eq.(1): validation set/Eq.(2): validation set
3,5-Diisopropyl-4-aminobiphenyl Biphenyl −1.95 −2.14 −1.30
4′-Ethyl-4-aminobiphenyl Biphenyl −0.14 −0.76 −0.42
3′-Trifluoromethyl-4-aminobiphenyl Biphenyl −0.38 0.98 −0.38
3′-Methyl-4-aminobiphenyl Biphenyl 0.74 −0.82 −0.47
3-t-Butyl-4-aminobiphenyl Biphenyl −0.39 −2.52 −1.73
1-Ethyl-2-aminofluorene Fluorene 1.85 1.94 1.92
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Table 5 (Continued)

Chemical Chemical class Experimental
LogR

Predicted LogR
(Eq.(1))

Predicted LogR
(Eq.(2))

7-t-Butyl-2-aminofluorene Fluorene −0.20 0.13 0.57
7-Adamantyl-2-aminofluorene Fluorene −0.64 3.17 2.88

Eq.(1): validation set/Eq.(2): training set
4′-n-Butyl-4-aminobiphenyl Biphenyl −0.74 −0.72 −0.38
3,5-Dimethyl-4-aminobiphenyl Biphenyl −1.34 −0.63 −0.21
3′,5′-Dimethyl-4-aminobiphenyl Biphenyl 0.35 −0.51 −0.11
3-n-Butyl-4-aminobiphenyl Biphenyl 0.17 −0.73 −0.39
4′-i-Propyl-4-aminobiphenyl Biphenyl −0.72 −1.62 −1.05
3-Ethyl-4-aminobiphenyl Biphenyl 0.17 −0.79 −0.45
3,5-Diethyl-4-aminobiphenyl Biphenyl −1.71 −0.42 −0.03
4′-t-Butyl-4-aminobiphenyl Biphenyl −1.17 −2.51 −1.71
4′-Methyl-4-aminobiphenyl Biphenyl 0.64 −0.83 −0.48
3-i-Propyl-4-aminobiphenyl Biphenyl −0.01 −1.63 −1.07
4′-Trifluoromethyl-4-aminobiphenyl Biphenyl −0.55 1.25 −0.13
3′,5′-Ditrifluoromethyl-4-aminobiphenyl Biphenyl −0.78 2.03 −0.88
1-t-Butyl-2-aminofluorene Fluorene 0.07 0.16 0.59
7-Methyl-2-aminofluorene Fluorene 1.47 1.82 1.81
1-n-Butyl-2-aminofluorene Fluorene 2.86 2.06 2.02
1-i-Propyl-2-aminofluorene Fluorene 2.23 1.08 1.28
7-Trifluoromethyl-2-aminofluorene Fluorene 0.76 3.05 1.40
1-n-Butyl-2-aminonaphthalene Naphthalene −0.29 −0.60 −0.28
1-t-Butyl-2-aminonaphthalene Naphthalene −2.00 −2.42 −1.64
1-i-Propyl-2-aminonaphthalene Naphthalene −0.62 −1.53 −0.98
1-Ethyl-2-aminonaphthalene Naphthalene 0.36 −0.68 −0.35

a Experimental LogR values originally reported by Debnath et al.[1] and Glende et al.[6,7].

4. Conclusions

The results of this analysis indicate that E-state
indices performed as well as other complex molecular
descriptors at modeling mutagenicity (Table 5). How-
ever, none of the E-state models presented in this article
or previously published research showed acceptable
predictive accuracy when subject to external validation.
Results for all the models indicated that the training set
data could be described relatively well using a number
of descriptors. However, results from external valida-
tions of these mutagenicity models indicated possible
over-fitting of the model data resulting in good internal
validation statistics, but poor predictive accuracy. On
the other hand, a data:predictor ratio of >10:1, as in all
the models discussed here, should be sufficient to avoid
this problem.

After investigating the results of this research, we
noted that stabilization of the resulting carbocation
formed upon activation to the bioactive intermediate,
in addition to steric factors hindering the reactivity of
the molecule, may play a significant role in affecting

the mutagenic potential of the compounds. The sta-
tistical assessment performed on the data set allowed
identification of these important spatial parameters not
investigated in the initial assessment. The mechanistic
considerations presented in this paper are not con-
sidered novel for this type of toxicity. However, even
with the identification of these potential mitigating
factors, as well as others previously identified such as
water solubility andKow, it is interesting to note that
many QSAR authors attempting to model this data set
have traditionally relied only on descriptors deemed as
“statistically significant” to the trends in the training
set, without providing a further inspection of the
potential mechanisms for the data set. For the effective
application of a toxicity QSAR, it is important that the
descriptors have a physicochemical interpretation that
is consistent with a known mechanism of biological
action for the endpoint of interest. Without this
additional step of reconciliation, it is often found that
models fall short when subject to external validation.

These results highlight the need to perform an exter-
nal validation of a model to assess its true predictive
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ability. Training set statistics and internal validation
techniques alone may be very misleading when trying
to evaluate the true predictive accuracy of a model.
With this in mind, it is important to understand the dif-
ferences between a model’s fit and a model’s predictive
ability. If interest is focused only on an understanding
of the mechanistic interpretation of the data, a model
with a good fit to the underlying data may be very
useful. However, this kind of model may not be appro-
priate or representative for other, new compounds
which were not included in the original training set.
What was particularly surprising in the present study
was that the model developed in[2] did a poor job of
predicting compounds described in[7], which differed
only in having an alkyl substituent far away from the
amine function. It is not intuitively obvious that such
substitution would greatly affect experimental LogR,
but it did. Models such as those developed here may
be used to derive trends in the data set or to give
insight into the appropriate grouping of chemicals
for compounds that would not typically be combined
if one looked only at structural similarities. These
assessments may be used to give the researcher a better
indication of the types of descriptors that could be
used more effectively to model an endpoint of interest.

Additional work is needed in order to determine if
E-state indices are appropriate descriptors for mod-
eling mutagenicity of aromatic amines. The E-state
sums may not adequately describe key positional fea-
tures that may influence the stability of the reactive
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