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a  b  s  t  r  a  c  t

Selective  inhibitors  of  target  serine  proteinases  have  a  potential  therapeutic  role  for  the treatment  of
various inflammatory  and  related  diseases.  We  develop  a  comparative  quantitative  structure–activity
relationships  based  analysis  on compounds  embodying  the 1,2,5-thiadiazolidin-3-one  1,1-dioxide  scaf-
fold. By  means  of  classical  Molecular  Dynamics  we  obtain  the  conformation  of each  lowest-energy
molecular  structure  from  which  we  derive  more  than  a thousand  of  structural  descriptors  necessary
eywords:
SAR theory
,2,5-Thiadiazolidin-3-one 1,1-dioxide
erine proteases
olecular Dynamics

for  building  predictive  QSAR  models.  We  resort  to two  different  modeling  approaches  with  the  purpose
of  testing  the  consistency  of  our  results:  (a)  multivariable  linear  regressions  based  on the  replacement
method  and  forward  stepwise  regression,  and  (b)  the  calculation  of  flexible  descriptors  with  the  CORAL
program.  All  the  models  are  properly  validated  by  means  of standard  procedures.  The  resulting  QSAR
models  are  supposed  to be of great  utility  for the  rational  search  and  design  (including  synthesis  and/or

es)  o
lexible descriptors in vitro  biochemical  studi

. Introduction

Various proteolytic enzymes, including the human leukocytes
lastase (HLE), cathepsin G (Cat G), and proteinase 3 (PR 3)
1] are (chymo)trypsin-like proteases with implications in the
tiology and/or pathophysiology of a range of inflammatory dis-
ases, including pulmonary emphysema [2],  chronic bronchitis
3], adult respiratory distress syndrome [4],  etc. The existence
f a protease–antiprotease imbalance is generally associated to
epressed levels of physiological protein inhibitors. It is for this
eason that there has been so much interest in developing highly
elective and potent irreversible inhibitors of serine proteases [1].

The 1,2,5-thiadiazolidin-3-one 1,1-dioxide structural scaffold
Fig. 1) has been recognized as a key structural constituent due to
ts high versatility for appending peptidyl or non-peptidyl recogni-
ion elements, which in turn favors the optimization of multiple
inding interactions to several enzyme subsites that allow sup-
ressing their activities. Other examples of inactivators of this
ind include haloenol and ynenol lactones [5,6], substituted iso-

oumarins [7],  3-alkyl-N-hydroxysuccinimide derivatives [8–10],
ubstituted dihydrouracils [11], �-lactams [12], and saccharin
erivatives [13–15].

∗ Corresponding author. Tel.: +54 221 425 7430/7291; fax: +54 221 425 4642.
E-mail address: pabloducho@gmail.com (P.R. Duchowicz).

093-3263/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.jmgm.2011.07.007
f  new  effective  non-peptidyl  inhibitors  of serine  proteinases.
©  2011  Elsevier  Inc.  All rights  reserved.

Among the main drawbacks of resorting to orally administered
peptide and protein drugs appears the underlying compromise
between efficiency and poor absorption, low metabolic stability
and rapid excretion. Furthermore, it has been observed that HLE and
Cat G resist the inhibition by proteins, although they are inhibited
by low molecular weight compounds [16]. The design of effective
non-peptidyl inhibitors of proteases has been commonly achieved
by searching a molecule that mimics the backbone conformation
of a protein inhibitor. It should also be capable of orienting recog-
nition elements appended to it in the same vector relationship as
the amino acid side chains of the protein inhibitor, thus making
it possible the exploitation of favorable substrate–enzyme binding
interactions.

The well known theory of quantitative structure–activity rela-
tionships (QSAR) [17–19] is based on the hypothesis that the
biological activity of a chemical compound is mainly determined by
its molecular structure [17]. It does not offer specific details on the
usually complex mechanism/path of the process. However, it is pos-
sible to get some insight into the underlying mechanism by means
of the QSAR-based predicted activities. As far as we are aware none
of the previous in vitro biochemical studies was  complemented by
the application of QSAR Theory to model the structure–activity rela-

tionships (SAR) exhibited by 1,2,5-thiadiazolidin-3-one 1,1-dioxide
compounds as inhibitors of serine proteinases. Quite on the con-
trary, different molecular modeling docking studies have analyzed
the energy-minimized enzyme-inhibitor complexes by means of

dx.doi.org/10.1016/j.jmgm.2011.07.007
http://www.sciencedirect.com/science/journal/10933263
http://www.elsevier.com/locate/JMGM
mailto:pabloducho@gmail.com
dx.doi.org/10.1016/j.jmgm.2011.07.007
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Fig. 1. The 1,2,5-thiadiazolidin-3-one 1,1-dioxide structural scaffold.

he Tripos Force Field of SYBYL software (Tripos Associates, St.
ouis, MO)  and the available experimental information on the crys-
al structures of the enzymes bound to the inhibitors [1,20–23].

In this work we carry out a QSAR analysis on several compounds
ith the 1,2,5-thiadiazolidin-3-one 1,1-dioxide scaffold that could

erve as a rational guide for the design of potent and selective ther-
peutic agents. It is our purpose to develop useful QSAR models for
redicting active and inactive molecular structures, which allows
s to describe the biochemical properties of thiadiazolidin-3-one
,1-dioxides.

. Materials and methods

.1. Experimental data set

The in vitro activities of 1,2,5-thiadiazolidin-3-one 1,1 dioxide
ompounds against the panel of serine proteases HLE, Cat G and PR

 are extracted from available biochemical studies [1,16,20–25];
hey are displayed in supplementary Table 1S.  Those inhibitory
otencies, which are expressed in terms of the apparent second-
rder inactivation rate constant k∗

inact[M
−1 s−1] measured with the

rogress curve method [26], are then converted into logarithm form
og10 k∗

inact for modeling purposes. All the heterocyclic compounds
nder analysis exhibit the particularity of being readily synthesized
sing aminoacid precursors [1,16,20–25].

The molecular set includes the 1,2,5-thiadiazolidin-3-one 1,1-
ioxide scaffold with different substituents, such as sulfones,
ulfides, sulfonamides, phosphates, carboxylates, etc., on 2 and 5N-
toms, and 4C-atom on the heterocycle (refer to Fig. 1).

.2. Geometry optimization and calculation of molecular
escriptors

We keep the S-configuration for the sp3 carbon atom in the
,2,5-thiadiazolidin-3-one 1,1-dioxide for all the molecular struc-
ures (including racemic mixtures), except when the chirality of the
p3 C-atom of the heterocycle changes in Table 1S,  in which case we
hoose the R-configuration. The initial conformations of the com-
ounds are drawn with the aid of the “Model Build” modulus of the
yperChem 6.03 program for Windows [27].

The conformational space of the molecules is scanned by means
f the Molecular Dynamics module of the HyperChem. The MM+

olecular Mechanics Force Field available in that package is used
or the simulations. The starting geometries are heated from 0 to
00 K in 0.1 ps. After that, the temperature is kept constant by cou-
ling the system to a simulated bath with a relaxation time of 0.5 ps.
fter an equilibration period of about 5 ps, a 500 ps simulation is
arried out saving the coordinates every 10 ps. The simulation time
tep is 1 fs. The saved geometries are then minimized to an energy

radient smaller than 0.01 kcal mol−1 ´̊A−1, using the Semiempir-
cal Method PM3  from the Molecular Orbitals Theory with the

olak–Ribiere algorithm. The lowest-energy conformers found in
uch simulations are employed as models for the 3D-structure.

We then compute 1497 molecular descriptors using the
ragon program [28], including descriptors of all types such
ics and Modelling 31 (2011) 10–19 11

as Constitutional, Topological, Geometrical, Charge, GETAWAY
(Geometry, Topology and Atoms-Weighted AssemblY), WHIM
(Weighted Holistic Invariant Molecular descriptors), 3D-MoRSE
(3D-Molecular Representation of Structure based on Electron
diffraction), Molecular Walk Counts, BCUT descriptors, 2D-
Autocorrelations, Aromaticity Indices, Randic Molecular Profiles,
Radial Distribution Functions, Functional Groups, Atom-Centred
Fragments, Empirical and Properties [29].

We  also calculate atomic charge density-based descriptors
by means of the Recon 5.5 software [30], encoding electronic
and structural information relevant to the chemistry of inter-
molecular interactions. This sort of computed descriptors is not
provided by Dragon software, and the robustness of Recon has
been demonstrated elsewhere [31,32]. Recon is an algorithm for the
reconstruction of molecular charge densities, and charge density-
based electronic properties of molecules, using atomic charge
density fragments precomputed from ab initio wavefunctions. The
method is based on the quantum theory of atoms in molecules
[33]. A library of atomic charge density fragments has been built
in a form that allows for the rapid retrieval of the fragments and
molecular assembly. In the present case, the smiles chemical nota-
tion is employed as input for the generation of 248 transferable
atom equivalent (TAE) descriptors, developed by Breneman and
Weber [34]. In this way, the total number of calculated structural
descriptors amounts to 1745 variables.

2.3. Model development

In order to verify the consistency of our results we  compare
the QSAR models obtained by means of two different approaches:
(a) the search for the best molecular descriptors via multivariable
linear regressions based on the replacement method (RM) and on
forward stepwise regression (FSR); (b) the calculation of flexible
descriptors with the CORAL (CORrelation And Logic) program. All
the routines necessary for present calculations were written in the
language of technical computing Matlab 7.0 [35]. In every QSAR
model displayed in this paper N denotes the number of training
set molecules, range is the experimental range of activities covered
by the model, d is the number of descriptors of the model, R2 is
the squared correlation coefficient, S is the standard deviation of
the model when applied on the training set, F is the Fisher param-
eter, res is the residual for a given molecule (difference between
the experimental and predicted activity), outliers > x.S indicates the
number of molecules with a predicted res greater than x times S,
Corrmax represents the maximum squared correlation coefficient
between two  given descriptors of the model, VIF is the variance
inflation factor, loo subscript belongs to the leave-one-out cross
validation result, and Rand superscript stands for Y-Randomization.

2.3.1. Linear descriptors search
2.3.1.1. Replacement method. In recent years theoretical and exper-
imental researchers have focused an increasing attention on finding
the most efficient tools for selecting molecular descriptors in QSAR
studies. Therefore, there are many methods for the selection of
the best structural descriptors from a large pool of them. One  of
such approaches is the replacement method (RM) [36,37] that has
already proved successful in earlier studies [38–42]. In brief, the RM
is an efficient optimization tool that generates multi-parametric
linear regression QSAR models on a training (calibration) molecu-
lar set by searching the set D of D descriptors for an optimal subset
d of d � D ones with minimum model’s standard deviation (S). The
quality of the RM results is satisfactorily close to the one obtained

from an exact (combinatorial) full search of molecular descriptors,
although with a much smaller CPU time. Our RM results take into
account the variance inflation factor (VIFij), a method for detect-
ing the severity of multicollinearity or high degree of correlation
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Table 1
Best QSAR found with the replacement method on HLE dataset.

d S R2 Sloo R2
loo

Stest R2
test Corrmax Molecular descriptors

1 1.20 0.460 1.23 0.430 0.95 0.686 – C-003
2 1.06 0.587 1.10 0.555 1.01 0.643 0.097 BIC3, C-003
3  0.87 0.721 0.92 0.689 0.98 0.669 0.166 IC3, Mor15p, C-003
4  0.80 0.766 0.87 0.728 0.95 0.697 0.166 BIC3, Mor15p, C-003, MLOGP
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5 0.74  0.801 0.81 0.764 0.87 

6 0.71  0.821 0.79 0.781 0.83 

7 0.70  0.830 0.79 0.783 0.83 

linear dependency) among two or more supposedly independent
ariables [43,44]. VIFij for a given descriptor i can be easily com-
uted if we know the squared correlation coefficient R2

ij
between

his descriptor and the remaining j ones of the model:

IFij = 1

1 − R2
ij

(1)

n practice, a value VIFij > 10 indicates that there may  be significant
ulticollinearity among the chosen subset of descriptors.

.3.1.2. Forward stepwise regression. The forward stepwise regres-
ion (FSR) [45] consists of a step-by-step addition of the best
escriptors to the linear model so that they lead to the smallest S in
he training set, until there is no-other variable outside the equa-
ion that satisfies the selection criterion. The FSR requires fewer
inear regressions than RM.

.3.2. The CORAL method
CORAL version 1.4 [46] is a freeware for Windows. Each

olecular structure must be represented by SMILES (Simplified
olecular Input Line Entry System) notation, calculated with

CD/ChemSketch software [47]. CORAL is based on the presence
f certain SMILES attributes occurring in the molecule which can
e associated to its activity [48–51].  Symbols representing chemical
lements, cycles, branching of molecular skeleton, charges, etc., are
sed as SMILES attributes. The CORAL modeling process not only
onsiders the presence of individual elements SMILES attributes
sk), but also clusters of two (ssk) and three (sssk) of them. For exam-
le, SMILES = Clc1ccccc1 then sk = (Cl, c, 1, c, c, c, c, c, 1); ssk = (Clc,
1, cc, cc, cc, cc, cc, c1); sssk = (Clc1, c1c, ccc, ccc, ccc, ccc, cc1).

The model is a one-variable correlation between the activity
alues and the flexible descriptor (DCW) defined as:

CW(threshold) = ˛
∑

k

CW(sk) + ˇ
∑

k

CW(ssk) + �
∑

k

CW(sssk)

(2)

here ˛, ˇ, � are 1 or 0, and CW is the correlation weight for the ele-
ent/s of the SMILES. The threshold is the parameter used to define

are (noise) SMILES attributes. The rare SMILES attributes may  lead
o overtraining: excellent correlation for the training set accom-
anied by poor correlation for the validation set. The threshold is
n integer j with the meaning that all SMILES attributes that take
lace in less than j SMILES notations of the training set are classi-
ed as rare. In present study, numerical data for CW are calculated
y Monte Carlo simulation maximizing the correlation coefficient
etween the activity values and the DCW descriptor defined in Eq.
2) for the training set. The quality of the predictions depends on the
elected options/parameters in the algorithm, such as the number
f epochs used during the Monte Carlo optimization, Dstart, dprecision,

Rweight, dCweight, threshold range and others, which should be cor-
ectly specified in order to calculate the DCW values. More specific
etails of the CORAL algorithm are available in the recent literature
48–51].
0.757 0.166 BIC3, Mor15p, HATS8e, C-003, MLOGP
0.790 0.526 IC2, piPC05, BEHp8, RDF055e, C-003, MLOGP
0.797 0.178 SIC3, PCD, BEHp1, Mor13u, R5+

v , C-003, MLOGP

2.3.3. Analysis of the happenstance of the model
Another simple way  of proving that the structure–activity rela-

tionships derived in this study do not result from happenstance
comes from checking their robustness by means of the so-called
Y-randomization [52]. This technique consists of scrambling the
experimental values of the property in such a way that they do
not longer correspond to the respective compounds. The smallest
standard deviation SRand obtained after analyzing 1000 cases of Y-
randomization for each developed QSAR turned out to be poorer
(greater) than the one found in the true calibration (S). This result
supports the assumption that the correlations derived here are not
fortuitous but the result of actual structure–activity relationships.

2.3.4. Model validation
In addition to provide a satisfactory correlation for the training

set, each QSAR should be properly validated in order to test its pre-
dictive performance. For example, we  can carry out the test known
as Leave-One-Out Cross Validation (loo) [53]. Statistical parame-
ters R2

loo and Sloo measure the stability of the developed QSAR upon
inclusion/exclusion of compounds selected randomly and, accord-
ing to the specialized literature, R2

loo should be greater than 0.7 for
obtaining a validated model [54].

We also apply a more realistic validation that consists of omit-
ting from the complete molecular set (Table 1S)  some compounds
which constitute the ‘test set’ (denoted as ‘test’). By perform-
ing such a splitting one estimates whether the QSAR found have
any capability to estimate the activities of the compounds in
the “fresh” test set that have never been used in the construc-
tion of the model. We  randomly choose the molecules for the
training and test sets before starting the search for the optimal
model.

2.3.5. Degree of contribution of selected descriptors
In order to determine the relative importance of each descriptor

in the linear regression model, we  calculate standardized regres-
sion coefficients:

bs
j = sj bj

sY
j = 1, . . . , d (3)

where bj is the regression coefficient for the descriptor j, and sj
and sY are the standard deviations for that descriptor and for the
experimental activity, respectively. The larger the value of bs

j
the

greater the importance of the descriptor [45].

3. Results and discussion

We apply FSR and RM to the three datasets (HLE, PR 3 and Cat G)
and obtain the best linear regressions with 1–7 variables extracted

from the set of D = 1745 descriptors. As discussed in earlier papers
[36,37,55] the RM provides various final solutions with minimum
S for the training set, from which one has to select the model with
the best predictive value.
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ig. 2. Predicted log10 k∗
inact

for HLE according to Eq. (4) as function of experimental
alues.

.1. QSAR on HLE data

The best RM models for HLE appear highlighted in
upplementary Table 2S and are copied into Table 1. We  appreciate
hat in this case, as well as for the other datasets, the various RM

odels with different dimensions exhibit roughly the same value
f S. From them we select the following five-descriptors model:

og10 k∗
inact = −11.496(±3) + 20.301(±3) · BIC3

−2.280(±0.3) · Mor15p − 4.611(±1) · HATS8e

+1.274(±0.2) · C-003 + 0.501(±0.09) · MLOGP (4)

 = 90, range = 1.000–6.693, d = 5, N/d = 18, R2 = 0.801, S = 0.74,
 = 67.9, outliers > 3.S = 0, Corrmax = 0.167, R2

loo = 0.764, Sloo = 0.81,
2
l–20%–o = 0.682, Sl–20%–o = 0.95, SRand = 140, Ntest = 42, R2

test =
.757, Stest = 0.87.

It represents a compromise between the statistical performance
chieved on both the training and test sets, given by the values
f S and Stest, respectively. It is worth noting that the Stest is the
alue of the standard deviation resulting from the application of the
hosen model to the test set with compounds that were not used
n the construction of the model. We  follow the common practice
f keeping a relatively small number of descriptors in the model
n order to avoid any possible fortuitous correlation. At the same
ime we want the model with the best predictive value which is
xpected to be the one with the smallest value Stest. The application
f all these considerations to Table 1 leads to the d = 5 model shown
n Eq. (4).  Further proof of the predictive value of the chosen model
s provided by contrasting the predicted and experimental values
f the activities as shown in Fig. 2, the dispersion plot of residuals
i.e. residuals as function of predicted activities) shown in Fig. 1S,
nd the absence of interrelationships between the descriptors of
q. (4) (see the correlation matrix, Table 3S).

Table 2 shows the activities predicted by each QSAR as well
s the experimental values for comparison. We  appreciate that
q. (4) predicts the experimental activities of the compounds in
he training and test sets reasonably well (test data marked with
. It is worth mentioning that the model predicts low activities
or the inactive compounds in both sets. Compounds for which
ctivities have not yet been measured do not exhibit favorable

redicted inhibitory potencies, which is in line with previous SAR
bservations [1,16,20–25]. All these facts strongly suggest that the
odels derived in this work may  be useful, predictive and properly

alidated.
ics and Modelling 31 (2011) 10–19 13

The descriptors in Eq. (4) embody multidimensional features
of the molecular structure, where the 3D conformation-dependent
descriptors were obtained by Molecular Dynamics. The parameters
can be classified as follows:

• Topologicals (2D): BIC3, bond information content (neighbor-
hood symmetry of 3-order), obtained from elements of Graph
Theory.

• 3D-MoRSE (3D): Mor15p, signal 15/weighted by atomic polar-
izabilities, obtained from the 3D-molecule representation of
structure based on electron diffraction.

• GETAWAY (3D): HATS8e, leverage-weighted autocorrelation of
lag 8/weighted by atomic Sanderson electronegativities, derived
from the molecular influence matrix.

• Atom-Centred Fragments (1D): C-003, number of CHR3 groups,
where R represents any group linked through carbon.

• Property (1D): MLOGP, Moriguchi octanol–water partition coef-
ficient, which is a measure of the lipophilic character of the
compounds.

Specific details of such theory-based Dragon descriptors are
well-known in the literature [29]. Application of Eq. (3) leads to
the following order of contributions to the inhibition of HLE:

Mor15p (0.45) > BIC3 (0.39) > C-003 (0.35) > MLOGP (0.32)

> HATS8e (0.22) (5)

The relative magnitudes of the coefficients bs
j

(shown between
parentheses) suggest that the numerical variables complement
each other and that the selected structural attributes are similarly
relevant for predicting the biological activity. The application of
FSR leads to the models in Table 4S.  It is clear that none of them
yields a better result than the one provided by RM for a given d on
the test set.

In what follows we  discuss an optimal flexible descriptor cal-
culated with the CORAL program. Upon inserting into Eq. (2) the
correlation weights produced by a Monte Carlo simulation, we
obtain the following QSAR:

log10 k∗
inact = −4.643(±0.3) + 0.218(±0.007) · DCW1(0) (6)

N = 90, range = 1.000–6.693, d = 5, N/d = 18, R2 = 0.801, S = 0.74,
F = 67.9, outliers > 3.S = 0, Corrmax = 0.167, R2

loo = 0.764,
Sloo = 0.81, R2

l–20%–o = 0.682, Sl–20%–o = 0.95, SRand = 140, Ntest = 42,
R2

test = 0.757, and Stest = 0.87; N = 90, range = 1.000–6.693, d = 1,
N/d = 90, R2 = 0.918, S = 0.47, F = 979.9, outliers > 3.S = 1, R2

loo = 0.914,
Sloo = 0.48, R2

l–20%–o = 0.884, Sl–20%–o = 0.51, SRand = 148, Ntest = 42,
R2

test = 0.790, and Stest = 0.78.
The numerical parameters used in the CORAL calculation of

DCW1(0) are: number of epochs: 8, number of probes: 3, thresh-
old value adopted for the training and test set: 0, Dstart = 0.5,
dprecision = 0.01, dRweight = 0, dCweight = 0, and  ̨ =  ̌ = 0 (refer to Eq.
(2)). The QSAR given by Eq. (6) exhibits a slightly better prediction
value than Eq. (4).  Although it is based on a quite different modeling
methodology, it also predicts low activities for those compounds
with yet unknown experimental values. The predictions of Eq. (6)
are plotted in Fig. 3.

3.2. QSAR on PR 3 data

From the RM results in Table 5S we derive the best models with
1–7 descriptors shown in Table 3 and then the following optimal
QSAR:
log10 kinact = 1.638(±0.9) + 0.0448(±0.01) · G(N..Cl)

+ 0.0357(±0.009) · Mor02u − 15.841(±3) · HATS8p

+ 92.968(±28) · R5+
v + 1.242(±0.1) · C-003a (7)
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Table 2
The best models obtained with the RM technique on HLE, PR 3 and Cat G datasets.

No. HLE PR 3 Cat G

Exp. Eq. (4) Eq. (6) Exp. Eq. (7) Eq. (9) Exp. Eq. (10) Eq. (12)

1 3.915 4.497 3.795 2.633 2.938 3.015 Inactivea 0.730 1.659
2  4.831 4.443 4.115 3.107 3.783 3.123 2.898 2.173 3.171
3  3.892 4.118 3.791 2.924 3.357 2.687 1.845 2.197 2.344
4 4.803 4.225 5.006 3.850 3.582 3.960 1.903ˆb 1.617 2.882
5 4.588 4.441 4.683 4.013  ̂ 3.320 3.524 2.544 2.688 2.056
6  4.412 3.831 4.445 3.387 3.096 3.450 1.778 1.590 1.743
7  3.886  ̂ 3.924 3.847 3.021 2.170 2.991 2.176  ̂ 1.747 1.703
8  4.427  ̂ 4.216 4.254 3.248 3.665 3.826 2.462 2.460 2.185
9  3.305  ̂ 3.058 3.555 3.262  ̂ 2.951 3.568 1.477 1.149 1.025
10 3.233ˆ 3.435 4.597 –c 3.189 3.898 Inactiveˆ 1.791 0.962
11 3.021 3.008 2.575 2.491 2.682 2.538 Inactive 1.087 1.719
12  3.662 3.444 2.832 2.568  ̂ 3.691 3.058 Inactive 1.240 1.156
13 4.508 4.438 4.737 3.798 4.212 4.187 Inactive 1.376 1.228
14  5.340 5.074 4.914 4.210 3.816 3.857 2.255 2.185 1.722
15  3.977 3.954 3.795 3.352 3.764 3.398 Inactive  ̂ 1.736 0.861
16  4.979 3.885 3.972 3.719 2.905 3.067 2.041 1.985 1.355
17  3.819  ̂ 4.034 3.692 – 2.876 2.927 Inactive 2.072 1.112
18  4.348 4.150 4.045 3.981 3.842 3.500 2.000 1.743 1.777
19 4.677ˆ 4.373 4.987 4.228 4.313 4.290 2.204  ̂ 0.975 2.143
20  5.217 4.257 5.156 4.307 3.852 4.251 1.845  ̂ 2.211 2.976
21 4.188 4.509 4.715 3.904  ̂ 3.886 4.071 1.301 1.125 1.219
22  4.000  ̂ 4.283 4.883 3.512  ̂ 3.807 4.032 1.778  ̂ 2.374 2.052
23  4.582 5.207 4.437 3.679 3.865 3.688 Inactive  ̂ 0.582 1.254
24  5.380 4.396 5.540 3.352  ̂ 2.861 3.864 Inactive 0.539 2.183
25  Inactive 0.661 0.684 – 1.788 0.599 1.477 2.514 2.187
26 Inactive 1.454 1.212 – 1.433 0.699 2.079 2.191 2.080
27  Inactive 0.400 0.828 Inactive 1.388 0.953 4.049 3.633 3.132
28 Inactiveˆ 0.795 0.828 – 1.423 0.953 3.199 3.292 3.132
29  Inactive 2.302 1.212 – 1.249 0.316 2.505  ̂ 2.433 2.877
30  Inactive  ̂ 1.660 1.233 – 2.018 0.669 2.881  ̂ 3.453 2.904
31 Inactive 1.381 0.973 – 2.089 0.869 3.053 2.653 2.243
32  Inactive  ̂ 1.511 0.973 – 1.150 0.869 2.447  ̂ 2.361 2.243
33 Inactive 1.139 1.109 Inactive  ̂ 1.421 1.711 3.575 4.028 3.963
34  2.892 2.834 2.955 3.262 2.257 2.263 Inactive 1.081 1.248
35  3.861 2.137 3.133 3.695  ̂ 1.481 1.932 2.114 1.704 1.741
36  Inactive  ̂ 2.202 0.970 Inactive 1.851 1.127 Inactive 1.203 1.289
37  Inactive 2.762 1.148 Inactive 1.857 0.797 Inactive  ̂ 2.090 1.782
38 Inactiveˆ 2.028 1.968 Inactive 1.415 1.174 Inactive 1.985 1.979
39  2.279 2.002 2.901 2.301  ̂ 1.801 2.545 Inactive 0.662 1.070
40 2.908ˆ 2.045 3.078 1.903 1.183 2.214 Inactive 1.397 1.564
41  Inactive 2.956 1.828 Inactive  ̂ 2.954 1.645 Inactive  ̂ 0.472 0.580
42  Inactive 2.731 2.005 Inactive 2.000 1.314 Inactive 1.332 1.074
43  3.033 2.706 3.010 Inactive  ̂ 2.178 1.981 Inactive 1.461 1.425
44  3.906  ̂ 2.514 3.187 Inactive 1.476 1.651 2.785 1.804 1.919
45 – 2.625 2.280 – 1.424 1.052 4.025 4.012 3.896
46  – 2.675 3.117 – 1.501 2.379 4.356  ̂ 3.973 4.068
47  – 1.175 2.624 – 1.508 1.113 4.107  ̂ 3.522 4.444
48  – 2.573 3.117 – 1.188 0.994 4.103 3.241 4.340
49  – 1.594 2.534 – 1.548 1.283 4.091  ̂ 3.754 4.104
50 –  0.559 1.410 – 0.501 0.663 3.929  ̂ 3.973 3.368
51  – 0.757 2.247 – 0.724 1.991 4.402  ̂ 3.212 3.541
52  – 2.362 2.302 – 1.525 1.709 4.240 4.206 3.718
53  – 0.438 –0.329 – 1.275 0.573 2.544 3.330 3.160
54  – 1.653 0.646 – 1.635 0.573 4.316 3.452 4.122
55 – 0.528 0.646 – 1.394 0.573 4.824 3.769 4.122
56  – 3.011 2.481 – 1.759 1.305 2.633  ̂ 2.818 2.552
57  – 1.654 0.713 – 1.301 1.032 4.234 3.909 4.041
58  – 2.707 –0.506 – 1.313 0.314 4.197 3.787 4.194
59  – 0.458 1.080 – 1.222 0.988 2.690 3.300 2.868
60  5.186 5.260 5.424 4.214  ̂ 3.977 3.739 – 1.388 0.645
61  4.831  ̂ 4.446 4.023 3.179 3.148 3.196 – 2.175 1.778
62  4.828  ̂ 5.337 2.976 3.777 3.490 3.771 – 2.170 0.532
63  4.349  ̂ 4.896 3.592 3.029  ̂ 2.496 2.178 – 2.594 2.618
64  4.906 5.134 4.889 4.015 3.851 3.999 1.477  ̂ 1.650 0.476
65  5.242 4.791 5.241 3.960 2.968 3.673 1.778 2.170 1.827
66  3.188 3.454 3.176 3.193 3.175 3.206 – 2.468 1.587
67  2.748  ̂ 2.214 2.425 2.531 2.698 2.478 – 3.304 1.850
68  4.403  ̂ 4.954 4.405 4.101  ̂ 3.640 4.094 – 1.545 0.488
69  5.226  ̂ 3.497 3.120 3.555  ̂ 3.463 3.376 – 1.858 1.749
70  4.355 4.786 4.192 4.045  ̂ 3.869 3.949 – 2.387 2.130
71  Inactive 2.900 1.397 3.037 2.708 3.008 1.699  ̂ 2.996 2.811
72 Inactiveˆ 1.750 0.360 Inactive 1.440 1.008 2.690 2.414 2.474
73 Inactive 0.611 1.080 Inactive 1.456 0.988 4.242  ̂ 3.694 2.868
74  Inactive  ̂ 2.759 2.481 Inactive 1.744 1.305 2.633 2.630 2.552
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Table  2 (Continued)

No. HLE PR 3 Cat G

Exp. Eq. (4) Eq. (6) Exp. Eq. (7) Eq. (9) Exp. Eq. (10) Eq. (12)

75 Inactive 1.105 0.713 Inactive 1.074 1.032 4.234  ̂ 3.634 4.041
76  Inactive  ̂ 2.713 0.018 Inactive  ̂ 1.475 0.715 4.197 4.419 4.473
77  4.797 4.608 4.588 3.230  ̂ 4.455 3.772 2.176 1.755 2.004
78  3.699 4.143 3.407 – 4.210 3.233 1.845 1.576 1.743
79 5.068 4.870  5.116 4.447ˆ 5.043 3.872 1.778 1.385 1.896
80  4.228 4.693 3.935 – 4.595 3.333 1.301  ̂ 1.085 1.635
81 4.846 5.180  4.913 3.255ˆ 4.034 4.254 Inactive 1.355 1.497
82  4.695 4.977 4.701 – 3.378 4.633 2.000  ̂ 2.071 1.889
83 5.554 5.554  5.442 4.810ˆ 4.810 4.354 Inactive  ̂ 1.566 1.389
84  5.788  ̂ 5.454 5.442 – 4.741 4.354 1.602 1.875 1.389
85 5.815 4.947  5.610 4.076 4.340 4.315 2.602 2.432 2.222
86  5.877 6.277 5.610 – 4.110 4.315 1.778 1.987 2.222
87 5.805ˆ 5.618  5.394 5.101 4.540 4.635 2.146 1.955 2.132
88  6.024 5.423 5.394 5.197  ̂ 4.641 4.635 1.699 1.823 2.132
89 4.978ˆ 5.769  5.229 – 4.279 4.733 1.699 1.985 1.781
90 5.273  4.575 5.229 4.130 4.401 4.733 1.602 1.496 1.781
91  5.483  ̂ 5.911 5.280 – 4.127 4.765 Inactive 1.161 0.712
92  4.844 5.402 5.067 – 4.107 5.144 Inactive 1.354 1.104
93  5.197  ̂ 4.031 4.643 – 4.487 3.764 1.778  ̂ 1.693 1.510
94  Inactive 0.828 1.216 2.519  ̂ 2.511 2.658 – 4.455 3.640
95  Inactive 0.788 1.004 3.365 1.944 3.037 – 3.382 4.033
96  Inactive 1.960 1.216 2.380 2.356 2.658 – 4.383 3.640
97 4.076 4.335  4.962 3.079  ̂ 4.852 4.795 – 0.294 0.144
98  4.607  ̂ 5.412 4.177 3.531 3.414 3.378 – 0.831 0.708
99  4.342  ̂ 4.340 3.785 3.477  ̂ 3.156 3.919 – 1.611 0.741
100  4.708 4.327 4.324 3.785  ̂ 3.671 3.262 – 0.306 0.082
101 4.848 5.250  5.139 3.806 4.209 3.717 – 0.613 0.413
102  4.851  ̂ 3.237 4.598 4.204  ̂ 2.677 3.889 – 2.330 1.024
103  4.452 4.527 3.937 4.004 3.261 3.815 2.301 1.930 2.124
104  3.996 4.137 3.847 3.505 3.495 3.493 – 1.152 0.277
105 5.148 4.998  4.993 4.439 4.775 3.897 – 0.747 0.351
106  5.173 4.122 5.237 3.380 3.360 3.403 – 0.941 0.569
107  5.361 4.797 5.034 4.438 4.023 4.324 1.778 1.215 1.449
108  5.127  ̂ 4.671 5.936 4.479 3.974 4.791 1.845 2.431 1.604
109 4.967 4.769  5.930 4.465 3.899 4.826 Inactive 0.919 1.429
110 4.149  3.841 4.015 3.716  ̂ 3.556 4.747 1.845 1.789 1.578
111  – 1.810 1.357 Inactive 1.379 0.817 1.954 2.139 2.353
112  – 3.091 2.173 Inactive 1.800 1.273 1.903 3.089 2.684
113 3.294 2.939  2.755 Inactive 1.442 0.983 3.732 3.203 2.920
114 2.477ˆ  1.496 2.662 2.954 2.077 3.063 Inactive  ̂ 1.555 1.267
115  2.602 2.093 3.191 2.477 2.162 3.163 Inactive 1.074 1.159
116  3.176  ̂ 2.902 3.434 2.602 2.169 2.670 Inactive 1.142 1.378
117 3.568 4.806  4.452 3.531 3.012 3.773 Inactive 0.675 1.703
118 3.114  1.818 2.717 3.708 2.843 2.781 Inactive  ̂ 1.752 1.445
119  3.653 3.831 3.770 3.301 3.176 3.146 2.301 2.333 2.385
120  Inactive 2.610 1.590 Inactive  ̂ 3.152 2.163 Inactive 0.659 0.777
121 3.613 2.962  3.556 3.380 4.100 3.916 1.845  ̂ 2.047 1.058
122 4.630  3.698 4.085 3.771 4.590 4.016 Inactive 1.666 0.950
123  4.782  ̂ 4.512 4.328 3.255 3.473 3.522 2.301  ̂ 2.324 1.169
124  4.137 4.693 4.471 – 4.419 3.578 2.477 2.659 2.985
125 5.213ˆ 4.570  3.946 – 2.822 2.953 – 2.587 1.902
126  4.962 4.477 4.137 3.415 3.729 3.686 3.041 2.753 1.497
127  5.427  ̂ 4.788 4.665 4.107 4.306 3.786 2.477 2.345 1.389
128  5.526 4.258 4.842 4.415 3.743 3.456 1.954 2.291 1.882
129  5.852  ̂ 5.759 5.346 4.945 4.680 4.626 2.699  ̂ 1.535 1.494
130  6.693 5.698 5.874 4.524 4.917 4.726 1.778 1.396 1.386
131  6.377 5.835 6.124 4.158 4.786 4.293 1.477 1.684 2.083
132  6.086 6.773 6.406 5.293 5.371 5.051 3.362 2.668 2.914
133 4.496 5.378  4.805 3.978 3.965 3.980 3.079  ̂ 2.445 1.573
134  5.503 5.563 5.333 3.987  ̂ 4.512 4.080 2.000 2.196 1.465
135  4.751 5.282 5.035 – 4.045 3.740 – 2.575 1.598
136  5.798 5.573 5.563 – 4.470 3.840 2.000  ̂ 1.959 1.490
137  5.472 5.779 5.531 – 4.529 4.742 – 1.838 1.569
138  3.505 5.041 5.699 – 3.160 4.703 – 2.269 2.402
139  5.553  ̂ 5.330 4.915 – 3.835 3.888 2.301 2.426 2.304
140  4.805 4.639 5.084 – 3.298 3.850 – 2.282 3.137
141  5.022 4.571 5.023 – 4.116 3.686 1.954  ̂ 2.286 1.327
142  5.597 5.359 5.533 – 4.066 3.613 1.845 1.658 1.973
143  5.877  ̂ 4.676 4.667 – 4.023 3.950 – 0.671 2.537
144  5.208 4.864 5.308 – 3.978 3.519 – 1.796 1.797
145  5.644 5.160 5.501 – 4.219 3.728 1.301 1.872 1.833
146 5.489 5.131  5.501 – 4.238 3.728 2.000 1.712 1.833
147  4.852 5.034 5.164 – 4.752 4.793 – 0.964 3.588
148  4.901  ̂ 4.112 5.776 – 5.129 5.663 – 0.756 4.718
149  3.556  ̂ 3.530 3.941 3.544 3.526 3.525 3.342  ̂ 3.792 3.944
150 – 2.114  2.280 – 0.931 1.052 4.025 4.054 3.896

a Modeled with the value 1.000.
b Denotes test set compound.
c Not determined.
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 = 70, range = 1.000–5.293, d = 5, N/d = 14, R2 = 0.806, S = 0.55,
 = 53.2, outliers > 3.S = 0, Corrmax = 0.236, R2

loo = 0.770, Sloo = 0.60,
2
l–20%–o = 0.656, Sl–20%–o = 0.75, SRand = 0.99, Ntest = 30, R2

test =
.406, and Stest = 1.06.

As in the precedent case, this model exhibits the best balance
etween the statistical parameters obtained on the training and the
est sets. Additional proof on the validity of Eq. (7) is provided by
he statistical results in Fig. 4 and Fig. 3S,  as well as through the cor-

elation matrix in Table 3S.  The FSR does not improve the results
roduced by Eq. (7) as shown in Table 6S.  Present QSAR correctly
redicts active and inactive thiadiazolidine derivatives. Those com-
ounds with yet unmeasured experimental activities do not display

able 3
est QSAR found with the replacement method on PR 3 dataset.

d S R2 Sloo R2
loo

Stest

1 0.88 0.480 0.91 0.445 1.07 

2  0.70 0.671 0.74 0.642 1.13 

3  0.62 0.748 0.66 0.712 1.17 

4 0.60  0.771 0.65 0.729 1.17 

5  0.55 0.806 0.60 0.769 1.06 

6 0.54  0.817 0.61 0.773 1.15 

7  0.54 0.824 0.61 0.771 1.12 
Fig. 5. Predicted log10 k∗
inact

for PR 3 according to Eq. (9) as function of experimental
values.

attractive predicted inhibitory potencies with the exception of 84
(4.741), 147 (4.752), and 148 (5.129).

All descriptors in Eq. (7) are 3D, with the exception of the
atom-centred fragment C-003. The G(N.Cl) stands for the sum of
geometrical distances between nitrogen and chlorine atoms, while
Mor02u is the 3D-MoRSE signal 02/unweighted. There are two
GETAWAY: HATS8p, the leverage-weighted autocorrelation of lag
8/weighted by atomic polarizabilities, and R5+

v , the R maximal auto-
correlation of lag 5/weighted by atomic van der Waals volumes.
The ranking of contributions of these descriptors reveals that the
number of CHR3 groups contributes most to the predicted PR 3
activities:

C-003 (0.49) > HATS8p (0.32) > G(N..Cl) (0.28)

> Mor02u (0.27) > R5+
v (0.25) (8)

Fig. 5 shows the predictions of the optimized single-descriptor
model

log10 k∗
inact = −3.120(±0.2) + 0.145(±0.005) · DCW2(0) (9)

N = 70, range = 1.000–5.293, d = 1, N/d = 70, R2 = 0.920, S = 0.34,
F = 781.6, outliers > 3.S = 0, R2

loo = 0.916, Sloo = 0.35, R2
l–20%–o =

0.884, Sl–20%–o = 0.38, SRand = 0.90, Ntest = 30, R2
test = 0.643, and

Stest = 0.74.
The numerical parameters used in the CORAL calculation of

DCW2(0) are identical to those mentioned for obtaining Eq. (6).  This
QSAR leads to a somewhat better prediction of the PR 3 inhibitory

activities in both the training and test sets and corroborates that
some of the unmeasured compounds may  have considerable activ-
ities, like 84 (4.354), 147 (4.793) and 148 (5.663).

R2
test Corrmax Molecular descriptors

0.306 – nCt
0.270 0.001 MATS2m, nCt
0.245 0.086 nCl, HATS8p, C-003
0.334 0.203 Mor15m, Mor16m,  HATS8u, nCt
0.406 0.236 G(N.Cl), Mor02u, HATS8p, R5+

v , C-003
0.387 0.542 VRA1, MATS2m, Mor16m,  R3m, R5+

v , nCt
0.428 0.362 MATS2m, Mor02u, Mor16v, ISH, R5+

v , nCt, C-002
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Table  4
Best QSAR found with the replacement method on Cat G dataset.

d S R2 Sloo R2
loo

Stest R2
test Corrmax Molecular descriptors

1 0.76 0.462 0.78 0.437 1.27 0.120 – piPC10
2 0.66  0.604 0.69 0.570 0.77 0.563 0.832 MPC09, SRW10
3  0.61 0.664 0.65 0.624 0.68 0.672 0.819 X3sol, MPC10, BELv3
4  0.55 0.729 0.59 0.696 0.55 0.803 0.857 X3sol, MPC07, BELv3, MATS5m

0.551 0.767 MPC08, BELv3, ATS3m, Mor02m,  Mor09m
0.704 0.767 MPC08, BELv3, ATS3m, GATS5m, RDF085v, Mor09m
0.658 0.803 SEige, MPC07, BELv3, ATS3m, Mor02m,  Mor09m,  R4u
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5 0.50 0.778 0.55 0.740 0.82 

6 0.47 0.812 0.50 0.781 0.67 

7 0.45  0.826 0.50 0.789 0.74 

.3. QSAR on cat G data

The analysis of the various models in Table 4 suggests that we
ay  choose the following QSAR equation:

og10 k∗
inact = −6.896(±3) + 0.0285(±0.003) · MPC08

+ 8.0830(±2) · BELv3 − 0.0964(±0.009) · ATS3m

−223.483(±48) · GATS5m + 0.0857(±0.02) · RDF085v

+ 0.730(±0.1) · Mor09m (10)

 = 84, range = 1.000–4.824, d = 6, N/d = 14, R2 = 0.812, S = 0.47,
 = 55.7, outliers > 3.S = 0, Corrmax = 0.767, R2

loo = 0.782, Sloo = 0.50,
2
l–20%–o = 0.706, Sl–20%–o = 0.58, SRand = 0.80, Ntest = 36, R2

test =
.704, and Stest = 0.67.

In this case, the order of the contributions to the Cat G activities:

PC08 (1.28) > ATS3m (1.25) > Mor09m (0.41) > BELv3 (0.40)

> RDF085 v (0.37) > GATS5m (0.28) (11)

here the two most relevant molecular descriptors have a topolog-
cal origin: MPC08, the molecular path count of order 8, and ATS3m,
he Broto-Moreau 2D-Autocorrelation of a topological structure-lag
/weighted by atomic masses. Other contributing descriptors are:
or09m,  the 3D-MoRSE signal 09/weighted by atomic masses; a

CUT (2D): BELv3, the lowest eigenvalue no. 3 of Burden matrix,
eighted by atomic van der Waals volumes; a 3D radial distri-

ution function (RDF): RDF085v, RDF 8.5/weighted by atomic van
er Waals volumes, and the 2D-Autocorrelation GATS5m, Geary
utocorrelation-lag 5/weighted by atomic masses. All these quan-

ities are well-defined in the literature.

In this case CORAL yields the following equation:

og10 k∗
inact = −1.695(±0.2) + 0.129(±0.007) · DCW3(1) (12)
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ig. 6. Predicted log10 k∗
inact

for Cat G according to Eq. (10) as function of experi-
ental values.
Fig. 7. Predicted log10 k∗
inact

for Cat G according to Eq. (12) as function of experi-
mental values.

N = 84, range = 1.000–4.824, d = 1, N/d = 84, R2 = 0.787, S = 0.48,
F = 302.5, outliers > 3.S = 1, R2

loo = 0.778, Sloo = 0.49, R2
l–20%–o =

0.741, Sl–20%–o = 0.53, SRand = 0.91, Ntest = 36, R2
test = 0.672, and

Stest = 0.69.
The numerical parameters used in the CORAL calculation for

DCW3(1) are the same as previously, with exception to the number
of epochs that in this case is 6, while the threshold value adopted
for the training and test set is 1. Table 2 shows that the predic-
tions of Eqs. (10) and (12) are consistent, despite of coming from
two utterly different modeling strategies. We plot the predictions
of Eqs. (10) and (12) in Figs. 6 and 7, respectively, while the dis-
persion plot of the residuals is available in Supplementary Material
section (Figs. 5S&6S). The numerical values for all the calculated
descriptors appearing in Eqs. (4)–(12) are provided in Table 9S.

4. Conclusions

The 1,2,5-thiadiazolidin-3-one 1,1-dioxide based compounds
have remarkable selectivity and are highly efficient inhibitors of the
human serine proteinases HLE, Cat G and PR 3. We  think that QSAR
may  be useful for a rational search of new heterocyclic inhibitors
of this type with low molecular weights, making it possible to
address the protease–antiprotease imbalance. In this work, we  have
developed predictive QSAR based on molecular descriptors calcu-
lated with Dragon, Recon and CORAL software by appropriately
representing the chemical structures of the 1,2,5-thiadiazolidin-3-
one 1,1-dioxides. Present results strongly suggest that such QSAR
models are suitable for distinguishing between active or inactive
structures beforehand, thus being powerful tools for the search
of new compounds with satisfactory activity. One of the main

contributions of this paper consists of proving that QSAR based
straightforward multiparametric linear regression is as effective as
the more complicated technique of molecular modeling docking
studies.
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