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Methodology of building up and validation of models for carcinogenic potentials of drugs by means of the
CORAL software is described. The QSAR analysis by the CORAL software includes three phases: (i) defini-
tion of preferable parameters for the optimization procedure that gives maximal correlation coefficient
between endpoint and an optimal descriptor that is calculated with so-called correlation weights of var-
ious molecular features; (ii) detection of molecular features with stable positive correlation weights or
vice versa stable negative correlation weights (molecular features which are characterized by solely posi-
tive or solely negative correlation weights obtained for several starts of the Monte Carlo optimization are
a basis for mechanistic interpretations of the model); and (iii) building up the model that is satisfactory
from point of view of reliable probabilistic criteria and OECD principles. The methodology is demon-
strated for the case of carcinogenicity of a large set (n = 1464) of organic compounds which are potential
or actual pharmaceutical agents.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Quantitative structure–activity relationships (QSAR) are a tool
to estimate/predict various endpoints (García et al., 2011; Garro
Martinez et al., 2011; Mullen et al., 2011; Toropov et al., 2011;
Furtula et al., 2012; Gramatica et al., 2012; Gutman, 2012; Gutman
and Furtula, 2012; Ibezim et al., 2012; Vrontaki et al., 2012;
Todeschini et al., 2012; Veselinović et al., 2013).

The carcinogenic activity exhibited by chemical substances is a
toxicological endpoint of high health interest and worry (Kar and
Roy, 2011; Duchowicz et al., 2012). There is a large group of QSAR
models for carcinogenicity developed during past years by differ-
ent researchers. On the other hand, Galvez has gathered the data-
base on the carcinogenic activity in the Discriminant Function (DF)
scale (DFcarc) for a wide set of 1815 organic compounds extracted
from the Merck index, based on the annual report of carcinogenesis
(Galvez, 2000). From this data set, different molecular subsets have
been taken to establish QSAR models (Hemmateenejad et al., 2005;
Deeb et al., 2007). A recent study (Kar and Roy, 2011) employs for
the first time a greater number of carcinogenic compounds, having
1464 molecules from the Galvez data set involving many therapeu-
tic agents. Next QSAR analysis of the same Galvez data has been
carried out by other authors group using other approaches
(Duchowicz et al., 2012).
The CORAL software is a tool for the QSAR analysis in general
(Mullen et al., 2011; Ibezim et al., 2012; Veselinović et al., 2013)
and for the QSAR analysis of carcinogenic endpoint in particular
(Toropov et al., 2009a,b, 2010, 2011; Toropova et al., 2011a). Con-
sequently, it is interesting task to check up the CORAL software as a
tool for the QSAR analysis of the above-mentioned Galves data on
the DFcanc.

Thus, the aim of the present study is the estimation of QSAR
models for carcinogenic potential (DFcanc) calculated with the COR-
AL software.
2. Method

2.1. Data

Numerical data on carcinogenic potentials are available on the
Internet (Galvez, 2000). Galves classified the 1815 compounds in
5 classes in the following manner: C = high expectancy of being
carcinogenic (>90%); PC = probable carcinogenic activity (between
70% and 90%); I = high expectancy of being non-carcinogenic
(>90%); PI = probable non-carcinogenic activity (between 70% and
90%); U = non-classified. The 345 non-classified compounds were
removed in order to get robust dataset (Kar and Roy, 2011;
Duchowicz et al., 2012). In addition six compounds were excluded
owing to their atypical nature (Kar and Roy, 2011).

Numerical data on carcinogenic potentials of the selected 1464
organic compounds (chemical domain which includes hydrocar-
bons, aliphatic alcohols, phenols, ethers, and esters; anilines,
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Fig. 1. The histogram of distribution of various DFcanc values (the range from �9.91
to 9.86).
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amines, nitriles, nitroaromatics, amides, and carbamates; urea and
thiourea derivatives, isothiocyanates, thiols, phosphate esters, and
halogenated derivatives) are expressed by DF (Discriminant Func-
tion). The range of DF is from �9.91 to 9.86. Positive value of DF is
an indicator of carcinogenic compounds, negative value of DF is an
indicator of non-carcinogenic compounds. Three splits into the
sub-training, calibration, test, and validation sets are examined.
These splits are prepared according to the following principles:
(i) they are random; (ii) they are different (Table 1); and (iii) each
set contains about 25% of the 1464 compounds. Canonic (Weininger
1988, 1990; weininger et al. 1989) for these compounds are
prepared with ACD/ChemSketch software (ACD/ChemSketch,
2007).

The roles of these sets are different: sub-training set is the
‘‘developer’’ of the model since correlation weights of compounds
from the set are used to build up the model; calibration set is
the ‘‘critic’’ of the model since data from this set are used to check
whether model is working for compounds which are absent in the
sub-training set; the test set is ‘‘estimator’’ of the model in cases of
various threshold values; finally, the ‘‘invisible’’ validation set is
used for the final estimation of the model with threshold value
which gives the best statistical quality for the test set, thus the
sub-training, calibration, and test sets are ‘‘visible’’ during building
up model, but no information on ‘‘invisible’’ validation set is used
in the modeling process (Toropov et al., 2013).

Fig. 1 contains the histogram of distribution of compounds
according to DFcanc values.

2.2. Optimal descriptor

The model for carcinogenic potential expressed by DF is calcu-
lated as the following:

DF ¼ C0 þ C1 � DCWðT; E; SMILESÞ ð1Þ

where DCW(T, E, SMILES) is optimal descriptor calculated with
formula.

DCWðT; E; SMILESÞ ¼
X

CWðSkÞ þ
X

CWðSSkÞ

þ
X

CWðSSSkÞ þ CWðNOSPÞ

þ CWðHALOÞ þ CWðBONDÞ ð2Þ

where CW(X) is correlation weight for a molecular feature extracted
from simplified molecular input-line entry system (SMILES); Sk, SSk,
and SSSk are fragments of SMILES.

For example, in the case of SMILES = CCCN
Table 1
Percentage of identity of splits 1–3.

Set Split 1 Split 2 Split 3

Split 1 Sub-training 100a 25.9 27.2
Calibration 100 25.0 22.8
Test 100 26.8 27.6
Validation 100 25.9 30.3

Split 2 Sub-training 100 26.3
Calibration 100 24.4
Test 100 27.4
Validation 100 29.4

Split 3 Sub-training 100
Calibration 100
Test 100
Validation 100

a Identity ð%Þ ¼ Ni;j

0:5 � ðNiþNjÞ � 100 where Ni,j is the number of substances which are
distributed into the same set for both i-th split and j-th split (set = sub-training,
calibration, test, validation); Ni is the number of substances which are distributed
into the set for i-th split; Nj is the number of substances which are distributed into
the set for j-th split.
Sk ¼ ð‘C’; ‘C’; ‘C’; ‘N’Þ
SSk ¼ ð‘CC’; ‘CC;‘CN’Þ
SSSk ¼ ð‘CCC’; ‘CCN’Þ

NOSP, HALO, and BOND global molecular descriptors which reflect
the presence (absence) of nitrogen, oxygen, sulphur, phosphorus
(NOSP), fluorine, chlorine, and bromine (HALO), as well as presence
(absence) of double (‘@’), triple (‘#’), and stereochemical (‘@’) cova-
lent bonds (Toropova et al., 2011b). Fig. 2 contains example of cal-
culation of these descriptors.

The Monte Carlo method optimization provides the numerical
data on the correlation weights. The ‘‘visible’’ training set contains
three subsets with different roles: sub-training set that is ‘‘devel-
oper’’ of the model; calibration set that is ‘‘critic’’ of the model;
and test set that is ‘‘estimator’’ of the model. The ‘‘invisible’’ valida-
tion set contains external compounds which are not involved in
the modeling process. T and E are parameters of the optimization
procedure: T is threshold for definition of rare (noise) molecular
features which should be blocked (i.e., their CW = 0) and E is the
number of epochs of the optimization.

Building up of model by means of the CORAL software for a gi-
ven split includes three phases. The first phase is selection of pref-
erable T* and E* which give best statistic quality of the model for the
test set. The second phase is calculation of model with DCW(T*, E*,
SMILES). Third phase is the checking up of the model with the val-
idation set. Fig. 3 gives the graphical representation of this optimi-
zation task.

Having carried out several runs of the Monte Carlo optimiza-
tion, one can get lists of molecular features which are characterized
by solely positive correlation weight (these can be interpreted as
promoters of endpoint increase) together with features which are
characterized by solely negative correlation weight (these can be
interpreted as promoters of endpoint decrease). The role of molec-
ular features which have both positive and negative correlation
weight is not clear (Toropova et al., 2011b; Toropov et al., 2013).
Fig. 2. Example of calculation of global SMILES-attributes NOSP, HALO, and BOND.



Fig. 3. The graphical representation of the selection (i) the threshold (T*); and (ii) the number of epochs of the Monte Carlo optimization (E*).

Fig. 4. Percentage of molecular features with defined role for ‘‘visible’’ (sub-
training, calibration, and test sets) and ‘‘invisible’’ validation set for three splits.
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The percentage of molecular features with defined role for a k-
th SMILES can be calculated as the following:

Pk ¼
NðincreaseÞ þ NðdecreaseÞ

NðtotalÞ � 100% ð3Þ

where N(increase), N(decrease), and N(total) are the number of
molecular features extracted from k-th SMILES which are (i) pro-
moters of increase, (ii) promoters of decrease, and (iii) total number
of molecular features extracted from k-th SMILES (including
blocked).

The percentage of molecular features with defined role (pro-
moters of increase or decrease) can be a measure of probability
of compounds fall in domain of applicability: if the percentage is
large this probability is higher than in the case if this percentage
is small. Ideal situation if the percentage is 100. However, in praxis,
the percentage is less than 100. We believe that according to the
percentage compound can be classified as one falls in the domain
of applicability if take place inequality.

Pk > jPTRN � DPTRNj ð4Þ

where PTRN is average percentage of molecular features with defined
role for the training set (i.e., for compounds involved in building up
model) and DPTRN is dispersion of the percentage on the training set.

It is to be noted that average value of the percentage and its dis-
persion are able to be criteria for the estimation of a split: split is
satisfactory if (i) these values are similar for the training and the
test set; (ii) the average percentage is as large as possible; and
(iii) the dispersion is as small as possible.
3. Results and discussion

Fig. 4 represents data on the percentage of molecular features
with defined role. According to above discussed logic all splits
are satisfactory, but the split 2 and the split 3 are characterized
by larger value of the percentage for both the ‘‘visible’’ set (i.e.,
the united set of sub-training, calibration, and test) and ‘‘invisible’’
validation set, hence these splits are more successful.

The analysis of data on the threshold (from 1 to 5) and the num-
ber of epochs (from 1 to 50) of the optimization gives preferable
value T* = 2 and E* = 20 ± 2 for all three splits. Table 2 contains
the statistical quality of models for splits 1–3.
In the case of the split 1, the model is the following:

DFcanc ¼ �0:0108 ð� 0:0048Þ þ 0:2112 ð� 0:0003Þ
� DCWð2;22; SMILESÞ ð5Þ

Fig. 5 contains the graphical representation for this model.
Table 3 contains comparison of statistical quality of models de-

scribed in the literature (Kar and Roy, 2011; Duchowicz et al.,
2012) and statistical quality suggested in this work for the case
of the split 1. The comparison shows that suggested models for
DFcanc are comparable with above-mentioned, hence the CORAL
software can be estimated as an useful tool for the QSAR analysis
of the carcinogenicity of drugs.

In order to estimate influence of a molecular feature to carcin-
ogenic potential one should take into account two circumstances:
(i) whether correlation weight of the feature is solely positive
(negative); and (ii) whether the molecular feature has significant
prevalence in the training set. According to the logic, one can
extract the following promoters of increase (positive correlation
weights and considerable prevalence in the training set) for carcin-
ogenic potentials:

1. The presence of aromatic cycles (‘‘cc1’’, ‘‘c2c’’ fragments in
SMILES).

2. The presence of nitrogen together with oxygen (NOSP1100).
3. The presence of double bonds (‘‘C@’’, ‘‘O@’’, BOND100).



Table 2
Statitical quality of models for carcinogenicity: n is the number of compounds in a set; R is correlation coefficient; Q2 is leave-one-out cross-validated correlation coefficient; r2

m

and Dr2
m are criteria of predictability described in the literature (Ojha et al., 2011; Roy et al., 2013).

Split Sub-training set Calibration set Test seta Validation set

n R2 Q2 s n R2 s n R2
r2

m Dr2
m s n R2 s

1 386 0.894 0.893 1.37 336 0.885 1.44 366 0.835 0.81 0.003 1.57 376 0.852 1.53
2 356 0.897 0.896 1.36 376 0.848 1.55 366 0.850 0.82 0.027 1.60 366 0.849 1.57
3 367 0.866 0.857 1.60 312 0.859 1.50 416 0.800 0.77 0.041 1.32 369 0.862 1.45

a According to the literature (Ojha et al., 2011; Roy et al., 2013) r2
m should be larger than 0.5 and Dr2

m should be less than 0.2.

Fig. 5. Graphical representation of the model for split 1 (Eq. (5)).

Table 4
The compliance to the OECD principles.

QSAR model (for regulatory
purposes) should obeys the
following five OECD principles:

How a principle is taken into
account in this work?

1 A defined endpoint The carcinogenic activity of organic
compounds that is represented by
the Discriminant Function (DF)
extracted from the Merck index,
based on the annual report of
carcinogenesis (Duchowicz et al.,
2012)

2 An unambiguous algorithm The Monte Carlo optimization which
is represented by the CORAL
software available on the Internet

3 A defined domain of applicability The domain of applicability is
defined by means of the percentage
of molecular features with defined
role (promoters of increase or
decrease for the endpoint)

4 Appropriate measures of
goodness-of-fit, robustness and
predictivity

Large values of correlation
coefficient and small root-mean-

squared error; r2
m

�
and Dr2

m metrics
(Roy et al. 2013) (Roy et al. 2013)

5 A mechanistic interpretation, if
possible

Lists of stable promoters of endpoint
increase and stable promoters of
endpoint decrease

Table 3
Comparison of different models for carcinogenic potential of the same 1464
compounds.

Training set External set References

n R2 s n R2 s

1 – – – 732 0.713 – Kar and Roy (2011)
2 732 0.74 2.04 732 0.77 1.91 Duchowicz et al. (2012)
3 1088 0.87 1.46 376 0.852 1.53 This work (split 1)
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Similarly, the following molecular features should be inter-
preted as promoters of decrease for carcinogenic potential (nega-
tive correlation weights and considerable prevalence in the
training set):

1. The presence of nitrogen (‘‘N’’, ‘‘NC’’, ‘‘CN(‘‘, ‘‘n’’, ‘‘nc’’, ‘‘ncc’’,
‘‘CN1’’).

2. The presence of sulphur (‘‘S’’, ‘‘SC’’).
3. The presence of double and stereochemical bonds (‘‘C@C’’,
‘‘H@C’’, BOND1010).

Table 4 contains the OECD principles and their realization for
the case of the optimal descriptors.

The Supplementary materials section contains (i) the descrip-
tion (representation) of the CORAL method that is examined in this
work (Table S1); and (ii) three splits of 1464 compounds into the
sub-training, calibration, test, and validation sets (Table S2). These
data can be used to reproduce the suggested model with the COR-
AL software available on the Internet (http://www.insilico.eu/
coral).
4. Conclusions

QSAR model for carcinogenic potential of organic compounds
which are therapeutic agents is suggested. The domain of applica-
bility for the model are hydrocarbons, aliphatic alcohols, phenols,
ethers, and esters; anilines, amines, nitriles, nitroaromatics,
amides, and carbamates; urea and thiourea derivatives, isothiocy-
anates, thiols, phosphate esters, and halogenated derivatives. There
is the mechanistic interpretation of the model by lists of statisti-
cally significant promoters of increase and statistically significant
promoters of decrease for carcinogenic potential. Thus, building
up of the model is carried out in accordance with the OECD
principles.

http://www.insilico.eu/coral
http://www.insilico.eu/coral
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Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ejps.2013.10.005.
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