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Aromatase inhibitors (AIs) represent a promising therapeutic class of anticancer agents against estrogen
receptor-positive breast cancer. Bioactivity data on pIC50 of 973 AIs were employed in the construction of quan-
titative structure-activity relationship (QSAR) models using COR relation And Logic (CORAL) software (http://
www.insilico.eu/coral) in which molecular structures are represented by the simplified molecular input line
entry system (SMILES) notation. Symbols inherently present in SMILES nomenclatures describe the presence
of molecular fragments and therefore represent a facile approach that essentially eliminate the need to geomet-
rically optimize molecular structures or the hassle of computing and selecting molecular descriptors. Predictive
models were built in accordance with the OECD principles. Monte Carlo optimization of correlation weights of
suchmolecular fragments provides pertinent information on structural constituents for correlatingwith the aro-
matase inhibitory activity. Results from different splits and data sub-sets indicated reliablemodels for predicting
and interpreting the origins of aromatase inhibitory activities with the correlation coefficient (R2) and cross-
validated correlation coefficient (Q2) in ranges of 0.6271–0.7083 and 0.6218–0.7024, respectively. Insights
gained from constructed models could aid in the future design of aromatase inhibitors.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Cancer is an eminent problem of public health concern as it is causes
morbidity and mortality worldwide [1]. Notably, breast cancer is pre-
dominantly found in women with estrogen receptor-positive breast
cancer [2]. Aromatase is an enzyme in the estrogen biosynthesis path-
way that serves as the major source of estrogen production in post-
manupausal women. Particularly, the catalytic activity of aromatase en-
tails the aromatization of C19 androgens to produce C18 estrogens [3].
As high level of estrogen is associated with tumor progression, there-
fore, inhibition of aromatase can reduce the estrogen level therebymak-
ing it a promising target for breast cancer [2,4,5]. Aromatase inhibitors
(AIs) are approved by the U.S. Food and Drug Administration as a
first-line treatment for estrogen receptor-positive post-menopausal
women as well as being used in cases of tamoxifen relapse [4,5]. Such
AIs can be categorized as steroidal and non-steroidal on the basis of its
structural chemotype whose mechanism of action is also different in
omedical Informatics, Faculty of
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namat).
which the former snugly binds in the binding pocket whereas for the
latter the azole nitrogen of non-steroidal AIs coordinates to the iron-
containing heme prosthetic group [6].

In efforts to reduce experimental time and cost, computational
approaches are promising alternatives that can be used to gain in-
sights on the origins of aromatase inhibitory activities. Quantitative
structure–activity/property relationships (QSPR/QSAR) are robust
tools for predicting the numerical data of endpoints for substances
of interest that were not previously examined experimentally [7,8].
Several successful examples have been reported on the utilization
of QSAR/QSPR for modeling a wide range of biological and chemical
properties [9–12]. However, each QSAR model must be constructed
in accordance with well-known Organisation for Economic Co-
operation and Development (OECD) principles [13]. The five OECD
principles are the personification of these limitations [14] which
QSAR models should be accompanied by the following information:
(i) a defined endpoint; (ii) an unambiguous algorithm; (iii) a defined
domain of applicability; (iv) appropriate measures for goodness-of-
fit, robustness and predictivity and (v) a mechanistic interpretation,
if possible [15]. The widely used representation of molecular struc-
tures for QSPR/QSAR analyses is the molecular graph and/or simpli-
fied molecular input-line entry system (SMILES) [13].
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A common problem in the development of QSAR/QSPR models can
arise from: (i) selection of an appropriate subset of molecular descrip-
tors from the masses of available descriptors, (ii) the vagueness of
interpreting certain descriptors obtained from QSAR/QSPR modeling,
and (iii) the need to geometrically optimize structures if three-
dimensional descriptors are to be used. Therefore, CORAL software
(available at http://www.insilico.eu/coral) is a tool that allows QSAR/
QSPR analysis as a function of conformation-independent and SMILES-
based descriptors while complying with the OECD principles [15–19].
CORAL software had previously been applied for modeling various bio-
logical activities and chemical properties of anti-bacterial agents [16,
20], anti-cancer agents [13,18,21,22], anti-HIV agents [23], antimalarial
agents [24,25], anti-neuraminidase agents [19], toxicity of compounds
[15,26], degradation of pollutants [27], inhibitors of voltage-gated po-
tassium channel subunit Kv7.2 [28], anti- human serine proteinases
[29] and anticonvulsant [30] agents.

Thus, the present study employed CORAL software for constructing
large-scale QSAR models for predicting the aromatase inhibitory activi-
ties of a set of 973 organic compounds (steroidal and non-steroidal AIs)
based on the Monte Carlo approach. Such models afford a simple and
versatile approach for discerning the origins of investigated activities di-
rectly from the SMILES notation that had been used for encodingmolec-
ular structures. The reliability of constructed QSAR models was
rigorously evaluated by means of 4 subsets of data for three random
splits.
Table 2
The scheme of extraction of SMILES atoms and other SMILES attributes in order to build up
a model.

SMILES
attribute

Examples on the representation for CORAL software

Sk SMILES-atoms, i.e. one symbol or two symbols which cannot be
examined separately, e.g. ‘C’ and ‘Cl’: this information is
represented by sequences of twelve symbols:

SSk A combination of two SMILES-atoms ‘CC’ and ‘CN’: this information
is represented by sequences of twelve symbols:
2. Method

2.1. Data

The numerical data for the aromatase inhibitory activities of 973 aro-
matase inhibitors were taken from our previous work [6] on exploring
the chemical space of aromatase inhibitors. The negative logarithmic
IC50 values of aromatase inhibitory activity (pIC50) were selected as
the endpoint for QSAR analysis. Three random splits of the data into
sub-training, calibration, test, and validation sets were performed. The
identity of these splits was lower than 30% (Table 1). No information
from the validation set was involved in building the model. In other
words, compounds from the validation set are invisible in themodeling
process. SMILES of compounds used in the representation of molecular
structures and their distributions to sub-training, calibration, test and
validation sets are provided in Supplementary Tables S1 and S2.
Table 1
Percentages of identity for random splits.

Set Split 1 Split 2 Split 3

Split 1 Sub-training 100.0⁎ 34.5 32.5
Calibration 100.0 34.8 33.6
Test 100.0 19.2 19.4
Validation 100.0 23.4 21.7

Split 2 Sub-training 100.0 31.9
Calibration 100.0 27.1
Test 100.0 24.0
Validation 100.0 22.2

Split 3 Sub-training 100.0
Calibration 100.0
Test 100.0
Validation 100.0

⁎
Identity %ð Þ ¼ Ni; j

0:5 � Ni þ Nj

� �� 100

where Ni,j is the number of substances distributed into the same set for both the ith split
and the jth splits (set = sub-training, calibration, test, and validation); Ni is the number
of substances distributed into the set for the ith split; and Nj is the number of substances
distributed into the set for the jth split.
2.2. Optimal descriptor

Optimal descriptors for constructing QSAR models are based on
SMILES notation as described according to the following equation [26]:

DCW SMILES; Threshold; Nepoch

� �
¼

X
CW Skð Þ þ

X
CW SSkð Þ

þ
X

CW SSSkð Þ þ CW NOSPð Þ þ CW HALOð Þ þ CW BONDð Þ

þ ðCW PAIRð Þ

ð1Þ

where threshold is the coefficient for classifying various molecular fea-
tures extracted from SMILES into two classes: (i) active (in this case,
correlation weight is involved in the modeling process) and (ii) rare
(in this case, correlation weight is not involved in the modeling pro-
cess). The Nepoch is the number of epochs using in Monte Carlo optimi-
zation giving rise to the best statistical quality for the calibration set,
Sk refers to one or two symbols from SMILES (e.g. ‘@@’, ‘Cl’, ‘Br’, etc.)
that cannot be examined separately, SSk and SSSk are the combination
of two and three Sk in SMILES, respectively; NOSP, HALO, BOND, and
PAIR are descriptors calculated according to the presence or absence
of various chemical elements and covalent bonds [26]; CW(X) is the
correlation weight for a SMILES attribute (descriptor). Particularly,
NOSP represents nitrogen, oxygen, sulfur and phosphorus atoms;
HALO represents fluorine (F), chlorine (Cl) and bromine (Br); BOND
represents double (=), triple (#) or stereochemical bonds (@ or @@);
and PAIR represents the possible combination of pair atoms and/or
SMILES attributes (such as, double, triple, and stereochemical bonds)
that takes place in the structure together. Table 2 contains examples
of the above-mentioned SMILES attributes.
SSSk A combination of three SMILES-atoms ‘CNC’ and ‘C#N’: this infor-
mation is represented by sequences of twelve symbols

BOND The presence/absence of double (‘=’), triple (‘#’), and stereo
chemical (‘@’) bonds, e.g. if SMILES = “CCC(O)CC”

NOSP Presence (absence) of nitrogen, oxygen, sulfur, and phosphorus, e.g.
if SMILES = “CCC(O)CC”

HALO Presence (absence) of fluorine, chlorine, bromine, and iodine
atoms, e.g. if SMILES = “ClCC(=O)CCl”

PAIR Simultaneous presence of two SMILES-atoms from the list: F, Cl, Br,
I, N, O, S, P, #, = and @; e.g. if SMILES = “ClCC(=O)CCl” the fol-
lowing pairs will be extracted:

http://www.insilico.eu/coral
Unlabelled image
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Correlation weights are calculated by the Monte Carlo method for
which they must provide the best statistical performance for the vis-
ible test set. The preferable threshold (T*) was selected using ranges
of 1–5 and the preferable number of epochs (N*) was selected from 1
to 75 for searching of the best T* and N*, respectively. The prelimi-
nary computational experiments have shown that threshold larger
than 5 afforded poor statistics for the model while the number of
epochs larger than 75 gave no modifications to the statistics for the
sub-training, calibration and test sets. Numerical data of correlation
weights that afford preferable statistics for the calibration set
makes it possible to calculate the endpoint value from the sub-
training set as follows:

Endpoint ¼ C0 þ C1 � DCW SMILES; Threshold; Nepoch

� �
ð2Þ

The predictive potential of the model should then be verified by
means of an external validation set, which is invisible during model
building. The statistical quality of the prediction (i.e. the statistical
quality of the model for the test set) is a mathematical function of
the threshold and the number of epochs fromMonte Carlo optimiza-
tion. The preferable threshold (T*) and the preferable number of
epochs (N*) are parameters that provide maximal correlation coeffi-
cient between experimental and calculated values of endpoint
values from the test set. Thus, roles of the four sets can be defined
as follows: (i) the sub-training set is used to develop the model;
(ii) calibration set is used to critique the model by checking whether
the model is satisfactory for compounds that are absent from the
sub-training set; (iii) the test set is used to preliminarily estimate
the predictive potential of the model; and (iv) the validation set pro-
vide the final estimate on the predictive potential of the model. Fur-
ther description of the software in detail is available on the Coral
website (http://www.insilico.eu/coral).

2.3. Statistical assessment of QSAR models

QSAR models were evaluated by R2 and Q2, which corresponds to
the goodness-of-fit and the goodness-of-prediction parameters, re-
spectively. The reliability of QSARmodels for interpretation was pro-
vided by the difference of R2 and Q2 as originally proposed by
Eriksson and Johansson [31]. The Fischer (F) ratio also provide fur-
ther estimate of the model's predictivity. Q2 was calculated accord-
ing to the following equation:

Q2 ¼ 1−

Xtraning

i¼1

yi−ŷið Þ
2

Xtraining

i¼1

yi−yið Þ2
ð3Þ

where yi is the experimental value, ŷi is the predicted value, and yi is
the averaged value of the entire data set and summation applies to all
compounds in the sub-training set.

Y-scrambling was also performed to rule out chance correla-
tions. This was performed as described previously by Ojha and
Roy [32] in which ten probes of calculation were carried out. One
probe of calculation Rr was derived as follows where X represents
the vectors of experiment, Y is the vector of prediction. Firstly, ex-
changes of random N1 and random N2 from row X (Y is not modi-
fied) were carried out 1000 times. Secondly, R(X,Y)

2 was then
calculated from the ten aforementioned probes and denoted as
Rr
2. Finally, the parameter CRp

2 was then calculated according to
the following equation:

CR2
p ¼ R� R2−R2

r

� �1=2 ð4Þ
where R2 from the non-randomized model and Rr
2 from the ran-

domized model were utilized. CRp
2 should be greater than 0.5 for

an acceptable QSAR model.

3. Results and discussion

3.1. QSAR modeling of aromatase inhibitors

In our previous study on exploring the chemical space of all known AIs
[6] compiled fromthe literature, thederiveddata setwasemployed for clas-
sifying compounds as active and inactive bymeans of decision tree analysis.
Compounds were represented by quantum chemical descriptors compris-
ing ofmean absolute charge, total energy, dipolemoment, highest occupied
molecular orbital, lowest unoccupied molecular orbital, energy gap of the
HOMO and LUMO together with molecular descriptors comprising of mo-
lecular weight, rotatable bond number, number of rings, number of hydro-
gen bond donor, number of hydrogen bond acceptor, Ghose-Crippen
octanol–water partition coefficient and topological polar surface area. The
classificationmodelprovided reliable statisticalquality asobserved fromac-
curacy greater than 70% for classifying active and inactive compounds.

Although extremely useful the previous model could only afford bi-
nary classification of the potential activity of compounds and the natu-
ral extension to this would be the ability to quantitatively predict the
compound's aromatase inhibitory activity. Thus, this study explores
the origins of aromatase inhibitory activity as a function of molecular
features extracted from SMILES-based attributes. The present study
also represents the first report for constructing regression QSARmodels
for predicting the numerical pIC50 values of aromatase inhibitory activ-
ities. Aromatase inhibitory activities from a large data set of 973 AIs
were modeled using CORAL software. This involved the use of SMILES
format for encoding the molecular description of compounds that is
subsequently used for calculating (predicting) the endpoint data that
is the pIC50 values. Such SMILES-based descriptors were then used in
the construction of predictive QSAR models by means of the Monte
Carlo approach. The general procedures of the QSAR modeling process
are summarized in Fig. 1.

Preferable values for T* and N* to use for Monte Carlo optimization
were defined in a preliminary analysis of the model calculated using
threshold values in the range of 1 to 5 (Table 3) and the number of
epochs ranging from 1 to 75 (Table 4). Both tables also show their re-
spective statistical characteristics. The optimal values of T* and N*
were then used for constructing the QSAR model. Results suggested
that the best values of T* for splits 1, 2 and 3were 4, 3 and 2, respective-
ly, whereas the best values of N* were 28, 28 and 49, respectively. The
data set comprising 973 AIs were divided into four groups (i.e. sub-
training, calibration, test and validation sets) and each set were used
for evaluating the predictive performance as shown below:

Split 1:

pIC50 ¼ 0:0000 �0:01454ð Þ þ 0:0772 �0:0002ð Þ � DCW SMILES; 4; 28ð Þ
n ¼ 320;R2 ¼ 0:6152;Q2 ¼ 0:6105;R2 − Q2 ¼ 0:0047; s ¼ 0:803; F ¼ 508 sub−training setð Þ

n ¼ 323;R2 ¼ 0:6152;Q2 ¼ 0:6102; R2 − Q2 ¼ 0:0050 ; s ¼ 0:874 calibration setð Þ

n ¼ 174;R2 ¼ 0:6194;Q2 ¼ 0:6101;R2 − Q2 ¼ 0:0093 ; s ¼ 0:740 test setð Þ

n ¼ 156;R2 ¼ 0:6907;Q2 ¼ 0:6826;R2 − Q2 ¼ 0:0081 ; s ¼ 0:615 validation setð Þ

ð5Þ

Split 2:
pIC50 ¼ 0:0028 �0:0155ð Þ þ 0:0797 �0:0002ð Þ � DCW SMILES; 3;28ð Þ

n ¼ 300;R2 ¼ 0:6495;Q2 ¼ 0:6446;R2 − Q2 ¼ 0:0049 ; s ¼ 0:799; F ¼ 552 sub−training setð Þ

n ¼ 281;R2 ¼ 0:6495;Q2 ¼ 0:6445;R2 − Q2 ¼ 0:0050 ; s ¼ 0:835 calibration setð Þ

n ¼ 180;R2 ¼ 0:6739;Q2 ¼ 0:6663;R2 − Q2 ¼ 0:0076 ; s ¼ 0:662 test setð Þ

n ¼ 212;R2 ¼ 0:6696;Q2 ¼ 0:6633;R2 − Q2 ¼ 0:0063 ; s ¼ 0:6593

validation setð Þ

http://www.insilico.eu/coral
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Fig. 1. Schematic illustration on the workflow of the predictive QSAR modeling performed herein.
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Split 3:

pIC50 ¼ 0:0001 �0:01509ð Þ þ 0:1063 �0:0003ð Þ � DCW SMILES; 2;49ð Þ

n ¼ 314;R2 ¼ 0:6271;Q2 ¼ 0:6224;R2 − Q2 ¼ 0:0047 ; s ¼ 0:794; F ¼ 525 sub−training setð Þ

n ¼ 279;R2 ¼ 0:6273;Q2 ¼ 0:6218;R2 − Q2 ¼ 0:0055 ; s ¼ 0:864 calibration setð Þ

n ¼ 186;R2 ¼ 0:7083;Q2 ¼ 0:7024;R2 − Q2 ¼ 0:0059 ; s ¼ 0:666 test setð Þ

n ¼ 194;R2 ¼ 0:6568;Q2 ¼ 0:6499;R2 − Q2 ¼ 0:0069 ; s ¼ 0:653 validation setð Þ

ð7Þ

For Eqs. (5)–(7), n is the number of compounds in each set, R2 is the
squared correlation coefficient value, Q2 is the leave-one-out cross-
validation coefficient of determination, R2 − Q2 is the difference of R2

and Q2, s is standard error of estimation and F is the Fischer ratio. In ad-
dition, DCW from Eqs. (5)–(7) displayed the best values of T* and N* (as
shown in Tables 3 and 4) for constructing QSAR models and providing
maximum correlation between the experimental and predicted
(pIC50) values. For example, DCW (SMILES, 2, 24) from split 1 means
that T* = 2 and N* = 4.

It can be seen that the obtainedQSARequations afforded reliable sta-
tistical quality for sub-training, calibration, test and validation sets ac-
cording to criterion described by Tropsha et al. [33] for QSAR models
Table 3
Definition of the preferable threshold (T*). Optimal threshold is indicated in bold.

Split Threshold Correlation coefficient (R2) Preferable

Probe 1 Probe 2 Probe 3 Average Dispersion

1 1 0.5857 0.6129 0.5839 0.5942 0.0133 T* = 4
2 0.6210 0.6008 0.6155 0.6124 0.0085
3 0.6199 0.6071 0.5838 0.6036 0.0149
4 0.6463 0.6186 0.6193 0.6281 0.0129
5 0.5832 0.5972 0.6062 0.5955 0.0095

2 1 0.6719 0.6750 0.6724 0.6731 0.0014 T* = 3
2 0.6643 0.6593 0.6742 0.6660 0.0062
3 0.6766 0.6889 0.6695 0.6783 0.0080
4 0.6612 0.6492 0.6634 0.6580 0.0063
5 0.6414 0.6351 0.6366 0.6377 0.0027

3 1 0.6893 0.6928 0.6938 0.6920 0.0019 T* = 2
2 0.7104 0.7136 0.7112 0.7118 0.0013
3 0.6971 0.6965 0.7034 0.6990 0.0031
4 0.6904 0.6838 0.6849 0.6864 0.0029
5 0.6604 0.6576 0.6601 0.6593 0.0013
where R2 N 0.6 and Q2 N 0.5 indicates predictive models. Plots of exper-
imental versus predicted pIC50 values from models calculated with
Eqs. (5)–(7) are presented in Fig. 2. It can thus be seen that the predicted
pIC50 values of compounds were in good correlation with its experi-
mental values. The numerical data of experimental and predicted
pIC50 values with DWC from splits 1 to 3 as calculated from
Eqs. (5)–(7) are provided in Supplementary Tables S1 and S2.

Furthermore, the reliability of constructed models was also assessed
from their R2 − Q2 values, which is a metric that accounts for the frac-
tion of Y-data explained by accumulated chance correlations where
values greater than 0.2–0.3 is indicative of the risk for chance correla-
tions or the presence of outliers in the data set. It was observed that
all four sets from three splits of QSAR modeling provided extremely
low R2 − Q2 values in the range of 0.0045 and 0.0091 that is well
below the criterion and thereby confirming the reliability of constructed
models for further interpretations. Concomitantwith this result, further
test of chance correlations was evaluated by Y-scrambling in which the
Y value (i.e. pIC50) is shuffled or randomly reordered with respect to its
associated X descriptors. Thus, 1000 trials of Y-scrambling were per-
formed in ten separate runs for all three splits and the average value
for each run is shown in Table 5. Results from Y-scrambling verify the
predictivity of constructed models with R2 values b0.0517.
Table 4
Definition of the number of epochs of theMonte Carlo optimization (N*). Optimal number
of epochs is indicated in bold.

Split Threshold Number of epochs Preferable

Probe
1

Probe
2

Probe
3

Average Dispersion

1 1 15 14 27 18.67 5.91 N* = 28
2 22 32 17 23.67 6.24
3 31 14 22 22.33 6.94
4 28 35 21 28.00 ≈ 28 5.72
5 20 35 35 30.00 7.07

2 1 7 13 11 10.33 2.49 N* = 28
2 33 14 12 19.67 9.46
3 16 35 32 27.67 ≈ 28 8.34
4 49 41 28 39.33 8.65
5 11 34 26 23.67 9.53

3 1 47 44 48 46.33 1.70 N* = 49
2 49 49 48 48.67 0.47
3 46 50 50 48.67 ≈ 49 1.89
4 50 50 49 49.67 0.47
5 49 50 50 49.67 0.47
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Fig. 2. Plot of experimental versus predicted pIC50 values as obtained from 3 splits of QSAR
modeling. Calibration, sub-training, test and validation sets are shown in blue, red, green
and purple, respectively.

Table 5
Y-scramblingperformed for 1000 trials in ten separate runs. The averageR2 values for each
run are shown.

Split 1

Training Calibration Test

320 323 174

Original 0.6152 0.6152 0.6194
1 0.0080 0.0007 0.0175
2 0.0051 0.0053 0.0091
3 0.0090 0.0019 0.0082
4 0.0008 0.0046 0.0138
5 0.0018 0.0138 0.0003
6 0.0084 0.0057 0.0009
7 0.0010 0.0002 0.0005
8 0.0091 0.0025 0.0083
9 0.0004 0.0260 0.0015
10 0.0021 0.0265 0.0005
Rr
2 a 0.0046 0.0087 0.0060

CRp
2 b 0.6129 0.6108 0.6164

Split 2

Training Calibration Test

300 281 180

Original 0.6495 0.6495 0.6739
1 0.0097 0.0040 0.0006
2 0.0108 0.0155 0.0171
3 0.0132 0.0010 0.0010
4 0.0001 0.0153 0.0090
5 0.0001 0.0118 0.0299
6 0.0079 0.0273 0.0283
7 0.0022 0.0057 0.0020
8 0.0111 0.0001 0.0360
9 0.0016 0.0129 0.0203
10 0.0007 0.0018 0.0252
Rr
2 a 0.0057 0.0095 0.0170

CRp
2 b 0.6466 0.6447 0.6654

Split 3

Training Calibration Test

314 279 186

Original 0.6271 0.6273 0.7083
1 0.0218 0.0073 0.0303
2 0.0027 0.0207 0.0006
3 0.0014 0.0006 0.0224
4 0.0091 0.0060 0.0017
5 0.0046 0.0117 0.0048
6 0.0043 0.0001 0.0276
7 0.0023 0.0001 0.0139
8 0.0029 0.0012 0.0001
9 0.0026 0.0038 0.0050
10 0.0099 0.0001 0.0033
Rr
2 a 0.0062 0.0052 0.0110

CRp
2 b 0.6240 0.6247 0.7028

a Average randomized R2.
b CRp

2 = R × (R2 − Rr
2)1/2 where CRp

2 should be greater than 0.5⁎.
⁎ Please refer to [32] for further details.
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In assessing the general level of performance of SMILES-based
QSAR models presented herein, it is necessary to consider the re-
sults of previously reported QSAR models. The first QSAR regres-
sion model on a diverse set of aromatase inhibitors was reported
by Roy and Roy [34] where they employed both 2D and 3D des-
criptors to afford the following statistical performance: n = 87
and R2 = 0.691 for training set while n = 29 and Q2 = 0.63 for
the test set. A subsequently reported QSAR model on a set of flavo-
noid derivatives from Narayana et al. [35]was developed using3Dde-
scriptors resulting in the following statistical performance: n = 39 and
R2 = 0.825 for the training set while n = 18 and Q2 = 0.815 for the
test set. Recently, we reported a QSAR model on a set of 1,2,3-triazole
analogs of letrozole [36] with statistical performance as follows: n =
40 and R2 = 0.7719 for the training set while n = 40 and Q2 = 0.6932
for the leave-one-out cross-validated test set. Moreover, we also report-
ed a QSAR model on two sets of flavonoid derivatives [37] and obtained
the following results for the first set: n = 33 and R2 = 0.9910 for the
training set while n = 33 and Q2 = 0.9736 for the leave-one-out
cross-validated test set. The second set produced the following results:
n = 19 and R2 = 0.9536 for the training set while n = 19 and Q2 =
0.8316. Comparison of the statistical quality of QSAR models suggested
in thisworkwith the aforementionedmodels indicated that CORAL soft-
ware gave reasonably good model for aromatase inhibitory activity.

3.2. Interpretation of structure–activity relationship

The SMILES molecular fragments were interpreted for exploring
chemical information that is involved in aromatase inhibitory activity
via the analysis of correlation weights obtained from QSAR modeling.
This was performed by dividing the data samples into the following
four classes: (i) list of promoters of pIC50 increase (all correlation
weights are positive); (ii) list of promoters of pIC50 decrease (all corre-
lation weights are negative); (iii) attributes with unclear role (there are

image of Fig.�2
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both negative and positive correlationweights); and (iv) blocked (rare)
attributes. Lists of the most significant promoters of activity are
displayed in Supplementary Table S3 that considers the ten top-
ranking fragments for increasing and decreasing the activity. Top-
ranking fragments for increasing the activity are (i) the presence of cy-
clic rings in the molecular structure (e.g. attributes of “1...........” and
“2...........”); (ii) the absence of halogens (HALO00000000); (iii) the pres-
ence of double bond (BOND10000000); and (iv) the presence in the
molecular structure of oxygen atoms together with double bonds that
are disconnected in the structure (++++O—B2==). Furthermore,
top-ranking fragments for decreasing the activity are (i) branching
(i.e. presence of brackets in the SMILES); (ii) the presence of nitrogen
and double bonds that are disconnected in the structure (++++N—
B2==); and (iii) the presence of oxygen atoms connected via double
bonds (“=…O…(…”). Thus, the approach employed herein provides
mechanistic interpretations for deducing how molecular fragments
may exert its influence on the aromatase inhibitory activity in increas-
ing or decreasing the activity.

4. Conclusions

In this study, CORAL software was employed for constructing QSAR
models for predicting the aromatase inhibitory activities of a large num-
ber of aromatase inhibitors. CORAL software gives reliable predictive
models for aromatase inhibitory activities using SMILES-based descrip-
tors, which are used to derive the correlationweights for molecular fea-
tures using Monte Carlo method. The predictive performance was
validated using different splits of the data set (i.e. sub-training, calibra-
tion, test and validation sets) for constructing QSAR models in accor-
dance with OECD guidelines. Predictive QSAR models provided herein
offers the potential to design novel aromatase inhibitors for estrogen
receptor-positive breast cancer.

Conflict of interest

The authors declare that there are no know conflict of interest.

Acknowledgements

This research is supported by the Goal-Oriented Research Grant
from Mahidol University (B.E. 2555-2557)to C.N. Additionally, A.P.T.
and A.A.T. acknowledge support from the EC project NANOPUZZLES
(Project Reference: 309837), EU FP7 project PreNanoTox (Contract
Number: 309666) and EC project CALEIDOS (Project Number: LIFE11-
INV/IT 00295).

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.chemolab.2014.07.017.

References

[1] A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, D. Forman, Global cancer statistics,
CA Cancer J. Clin. 61 (2011) 69–90.

[2] A.D. Favia, O. Nicolotti, A. Stefanachi, F. Leonetti, A. Carotti, Computational methods
for the design of potent aromatase inhibitors, Expert Opin. Drug Discov. 8 (2013)
395–409.

[3] N. Suvannang, C. Nantasenamat, C. Isarankura-Na-Ayudhya, V. Prachayasittikul, Mo-
lecular docking of aromatase inhibitors, Molecules 16 (2011) 3597–3617.

[4] J. Narashimamurthy, A.R. Rao, G.N. Sastry, Aromatase inhibitors: a new paradigm in
breast cancer treatment, Curr. Med. Chem. Anticancer Agents 4 (2004) 523–534.

[5] J.K. Litton, B.K. Arun, P.H. Brown, G.N. Hortobagyi, Aromatase inhibitors and breast
cancer prevention, Expert. Opin. Pharmacother. 13 (2012) 325–331.

[6] C. Nantasenamat, H. Li, P. Mandi, A. Worachartcheewan, T. Monnor, C. Isarankura-
Na-Ayudhya, V. Prachayasittikul, Exploring the chemical space of aromatase inhibi-
tors, Mol. Divers. 17 (2013) 661–677.
[7] C. Nantasenamat, C. Isarankura-Na-Ayudhya, V. Prachayasittikul, Advances in com-
putational methods to predict the biological activity of compounds, Expert Opin.
Drug Discov. 5 (2010) 633–654.

[8] C. Nantasenamat, C. Isarankura-Na-Ayudhya, T. Naenna, V. Prachayasittikul, A prac-
tical overview of quantitative structure–activity relationship, EXCLI J 8 (2009)
74–88.

[9] M. Khoshneviszadeh, N. Edraki, R. Miri, A. Foroumadi, B. Hemmateenejad, QSAR
study of 4-aryl-4H-chromenes as a new series of apoptosis inducers using different
chemometric tools, Chem. Biol. Drug Des. 79 (2012) 442–458.

[10] Y. Uesawa, K. Mohri, M. Kawase, M. Ishihara, H. Sakagami, Quantitative
structure-activity relationship (QSAR) analysis of tumor-specificity of 1,2,3,4-
tetrahydroisoquinoline derivatives, Anticancer Res. 31 (2011) 4231–4238.

[11] A.Worachartcheewan, C.Nantasenamat, C. Isarankura-Na-Ayudhya, S. Prachayasittikul,
V. Prachayasittikul, Predicting the free radical scavenging activity of curcumin deriv-
atives, Chemometr. Intell. Lab. Syst. 109 (2011) 207–216.

[12] A. Worachartcheewan, C. Nantasenamat, C. Isarankura-Na-Ayudhya, V.
Prachayasittikul, QSAR study of amidino bis-benzimidazole derivatives as
potent anti-malarial agents against Plasmodium falciparum, Chem. Pap. 67
(2013) 1462–1473.

[13] A.A. Toropov, A.P. Toropova, E. Benfenati, Additive SMILES-based carcinogenicity
models: probabilistic principles in the search for robust predictions, Int. J. Mol. Sci.
10 (2009) 3106–3127.

[14] Organisation for Economic Co-operation and Development, Guidance document on
the validation of (quantitative) structure-activity relationship [(Q)SAR] models,
http://www.oecd.org/dataoecd/55/35/38130292.pdf (2007).

[15] A.P. Toropova, A.A. Toropov, A. Lombardo, A. Roncaglioni, E. Benfenati, G. Gini, Coral:
QSAR models for acute toxicity in fathead minnow (Pimephales promelas), J.
Comput. Chem. 33 (2012) 1218–1223.

[16] A.A. Toropov, A.P. Toropova, E. Benfenati, G. Gini, D. Leszczynska, J. Leszczynski, G.
De Nucci, QSAR models for inhibitors of physiological impact of Escherichia coli
that leads to diarrhea, Biochem. Biophys. Res. Commun. 432 (2013) 214–225.

[17] A.A. Toropov, A.P. Toropova, E. Benfenati, G. Gini, D. Leszczynska, J. Leszczynski,
CORAL: QSPR model of water solubility based on local and global SMILES attributes,
Chemosphere 90 (2013) 877–880.

[18] A.P. Toropova, A.A. Toropov, CORAL software: prediction of carcinogenicity of drugs
by means of the Monte Carlo method, Eur. J. Pharm. Sci. 52 (2014) 21–25.

[19] A. Worachartcheewan, C. Nantasenamat, C. Isarankura-Na-Ayudhya, V.
Prachayasittikul, QSAR study of H1N1 neuraminidase inhibitors from influenza
A virus, Lett. Drug Des. Discov. 11 (2014) 420–427.

[20] A.A. Toropov, A.P. Toropova, E. Benfenati, G. Gini, T. Puzyn, D. Leszczynska, J.
Leszczynski, Novel application of the CORAL software to model cytotoxicity of
metal oxide nanoparticles to bacteria Escherichia coli, Chemosphere 89 (2012)
1098–1102.

[21] A.A. Toropov, A.P. Toropova, E. Benfenati, G. Gini, D. Leszczynska, J. Leszczynski,
CORAL: classification model for predictions of anti-sarcoma activity, Curr. Top.
Med. Chem. 12 (2012) 2741–2744.

[22] L.M.A. Mullen, P.R. Duchowicz, E.A. Castro, QSAR treatment on a new class of
triphenylmethyl-containing compounds as potent anticancer agents, Chemometr.
Intell. Lab. Syst. 107 (2011) 269–275.

[23] A.P. Toropova, A.A. Toropov, J.B. Veselinovic, F.N. Miljkovic, A.M. Veselinovic, QSAR
models for HEPT derivates as NNRTI inhibitors based on Monte Carlo method, Eur.
J. Med. Chem. 77 (2014) 298–305.

[24] V.H. Masand, A.A. Toropov, A.P. Toropova, D.T. Mahajan, QSAR models for anti-
malarial activity of 4-aminoquinolines, Curr. Comput. Aided Drug Des. 10 (2014)
75–82.

[25] E. Ibezim, P.R. Duchowicz, E.V. Ortiz, E.A. Castro, QSAR on aryl-piperazine derivatives
with activity on malaria, Chemometr. Intell. Lab. Syst. 110 (2012) 81–88.

[26] A.P. Toropova, A.A. Toropov, E. Benfenati, G. Gini, D. Leszczynska, J. Leszczynski,
CORAL: quantitative structure–activity relationship models for estimating toxicity
of organic compounds in rats, J. Comput. Chem. 32 (2011) 2727–2733.

[27] A.A. Toropov, A.P. Toropova, B.F. Rasulev, E. Benfenati, G. Gini, D. Leszczynska, J.
Leszczynski, CORAL: QSPR modeling of rate constants of reactions between organic
aromatic pollutants and hydroxyl radical, J. Comput. Chem. 33 (2012) 1902–1906.

[28] P.G. Achary, Simplified molecular input line entry system-based optimal descrip-
tors: QSAR modelling for voltage-gated potassium channel subunit Kv7.2, SAR
QSAR Environ. Res. 25 (2014) 73–90.

[29] J. García, P.R. Duchowicz, M.F. Rozas, J.A. Caram, M.V. Mirífico, F.M. Fernández, E.A.
Castro, A comparative QSAR on 1,2,5-thiadiazolidin-3-one 1,1-dioxide compounds
as selective inhibitors of human serine proteinases, J. Mol. Graph. Model. 31
(2011) 10–19.

[30] J.C.G. Martinez, P.R. Duchowicz, M.R. Estrada, G.N. Zamarbide, E.A. Castro, QSAR
study and molecular design of open-chain enaminones as anticonvulsant agents,
Int. J. Mol. Sci. 12 (2011) 9354–9368.

[31] L. Eriksson, E. Johansson, Multivariate design and modeling in QSAR, Chemometr.
Intell. Lab. Syst. 34 (1996) 1–19.

[32] P.K. Ojha, K. Roy, Comparative QSARs for antimalarial endochins: importance of
descriptor-thinning and noise reduction prior to feature selection, Chemometr.
Intell. Lab. Syst. 109 (2011) 146–161.

[33] A. Tropsha, P. Gramatica, V.K. Gombar, The importance of being earnest: validation
is the absolute essential for successful application and interpretation of QSPR
models, QSAR Comb. Sci. 22 (2003) 69–77.

[34] P.P. Roy, K. Roy, Docking and 3D-QSAR studies of diverse classes of human aroma-
tase (CYP19) inhibitors, J. Mol. Model. 16 (2010) 1597–1616.

[35] B.L. Narayana, D. Pran Kishore, C. Balakumar, K.V. Rao, R. Kaur, A.R. Rao, J.N. Murthy,
M. Ravikumar, Molecular modeling evaluation of non-steroidal aromatase inhibi-
tors, Chem. Biol. Drug Des. 79 (2012) 674–682.

http://dx.doi.org/10.1016/j.chemolab.2014.07.017
http://dx.doi.org/10.1016/j.chemolab.2014.07.017
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0005
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0005
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0010
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0010
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0010
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0015
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0015
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0020
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0020
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0025
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0025
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0030
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0030
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0030
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0035
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0035
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0035
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0040
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0040
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0040
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0045
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0045
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0045
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0050
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0050
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0050
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0055
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0055
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0055
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0060
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0060
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0060
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0060
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0065
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0065
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0065
http://www.oecd.org/dataoecd/55/35/38130292.pdf
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0070
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0070
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0070
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0075
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0075
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0075
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0080
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0080
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0080
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0085
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0085
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0090
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0090
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0090
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0095
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0095
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0095
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0095
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0100
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0100
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0100
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0105
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0105
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0105
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0110
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0110
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0110
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0115
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0115
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0115
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0120
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0120
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0125
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0125
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0125
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0130
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0130
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0130
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0135
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0135
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0135
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0140
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0140
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0140
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0140
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0145
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0145
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0145
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0150
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0150
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0155
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0155
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0155
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0160
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0160
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0160
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0165
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0165
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0170
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0170
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0170


126 A. Worachartcheewan et al. / Chemometrics and Intelligent Laboratory Systems 138 (2014) 120–126
[36] C. Nantasenamat, A. Worachartcheewan, S. Prachayasittikul, C. Isarankura-Na-
Ayudhya, V. Prachayasittikul, QSAR modeling of aromatase inhibitory activity of 1-
substituted 1,2,3-triazole analogs of letrozole, Eur. J. Med. Chem. 69 (2013) 99–114.
[37] C. Nantasenamat, A. Worachartcheewan, P. Mandi, T. Monnor, C. Isarankura-Na-
Ayudhya, V. Prachayasittikul, QSAR modeling of aromatase inhibition by flavonoids
using machine learning approaches, Chem. Pap. 68 (2014) 697–713.

http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0175
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0175
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0175
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0180
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0180
http://refhub.elsevier.com/S0169-7439(14)00164-6/rf0180

	Large-�scale QSAR study of aromatase inhibitors using SMILES-�based descriptors
	1. Introduction
	2. Method
	2.1. Data
	2.2. Optimal descriptor
	2.3. Statistical assessment of QSAR models

	3. Results and discussion
	3.1. QSAR modeling of aromatase inhibitors
	3.2. Interpretation of structure–activity relationship

	4. Conclusions
	Conflict of interest
	Acknowledgements
	Appendix A. Supplementary data
	References


