
1. Introduction
The treatment of  Human Immunodeficiency Virus (HIV) 
infection is a well-known important problem [1-17]. 
The tetrahydroimidazo[4,5,1-jk][1,4]benzodiazepinone 
(TIBO) derivatives, as non-nucleoside reverse 
transcriptase inhibitors, have a significant role in the 
treatment of HIV infection [5]. A series of 2-amino-6-
arylsulfonylbenzonitriles are also known as effective 
anti-HIV-1 agents [6]. Finally, the molecular structures 
together with the anti-HIV-1 activity of a series of 
effective fullerene based inhibitors have been described 
[17]. 

Quantitative structure-property/activity relationships 
(QSPRs/QSARs) approaches have become very useful 
and largely widespread for the prediction of various 

endpoints, in general [18-21]  and for prediction of anti-
HIV-1 activity, in particular [7-17].

Recently, the CORAL software has been suggested 
as a tool for QSPR/QSAR analysis [22]. A few models 
calculated with CORAL have been reported in the 
literature [23-26]. The representation of the molecular 
structure by the simplified molecular input line entry 
system (SMILES) is used to build the CORAL models 
[27-29].

The validation of QSPR/QSAR has been discussed 
many times [30-43]. Many authors agree that external 
validation is necessary, but typically only one split into 
the training and test sets is used for demonstration and 
validation of an approach. The necessity of examination 
of multiple splits into the training and test sets is discussed 
by Tropsha [44].
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Our studies show that using a series of splits can 
give important information about a QSPR/QSAR model, 
because there are ‘successful’ and ‘unsuccessful’ splits 
into the training and test sets [45-47]. Thus, the statistical 
characteristics of a QSPR/QSAR are a mathematical 
function of the split into the training and test sets. 

The above-mentioned CORAL software is a 
realization of the QSPR/QSAR approach based on 
the correlation weights of molecular fragments. The 
numerical data for the correlation weights are calculated 
by the Monte Carlo method. We deem that a robust 
model for many endpoints can be calculated by 
CORAL. However, for this aim, it is necessary to obey 
two principles. Principle 1: one should use as a criterion 
of robustness of a model the statistical quality for the 
external test set; Principle 2: for robust estimation of an 
approach, one should use a large number of splits into 
the training and test sets (as large as possible).

The aim of the present study is the estimation 
of the reliability of models for (i) anti-HIV activity of 
TIBO derivatives; (ii) anti-HIV-1 activity of 2-amino-
6-arylsulfonylbenzonitriles, and (iii) fullerene-based 
HIV-1 inhibitors, which are calculated using the CORAL 
software. The stability of the statistical quality of the 
CORAL models for a series of splits into the training and 
test sets has been used as a criterion of the reliability 
of the approach. The comparison of the classic scheme 
(training - test) and the balance of correlations (sub-
training - calibration - test) as two different approaches 
to building a model for anti-HIV-1 activity is an additional  
aim of the study. Finally, the ability to take into account 
the physicochemical situations in molecules (presence/
absence of different chemical elements) to improve 
the predictive potential of this approach has been 
studied.

2. Experimental procedure

2.1. Data
Three sets of data were studied: (i) SET 1. The anti-HIV 
activity of the TIBO compounds has been expressed 
as the compound’s ability to protect MT-4 cells against 
the cytopathic effect of the virus. The concentration 
of the compound leading to 50% effect has been 
measured and expressed as pIC50. The decimal 
logarithm of the inverse of this parameter has been 
used as the biological endpoint (i.e., -logIC50 = pIC50) 
in the QSAR studies [5]; (ii) SET 2. Data on negative 
decimal logarithm of IC50 (50% inhibitory concentration, 
in mol L-1) of the 2-amino-6-arylsulfonylbenzonitriles 
(-logIC50 = pIC50) [6]; and (iii) SET 3. Median effective 
concentration (EC50), expressed as the negative 

logarithm (pEC50) for fullerene C60 derivatives [17]. 
For each set (i.e., for the above-mentioned SET 
1, SET 2, and SET 3), six random splits into the 
sub-training, calibration, and test sets were studied. 
The canonical version of the SMILES notation(ACD/
ChemSketch Freeware, v. 11.00, Inc., Toronto, Canada, 
www.acdlabs.com, 2007) has been used in this 
study.

2.2. Descriptors 
The CORAL model is a one-variable model of an 
endpoint Y, calculated as

Y  =   C0  +  C1 DCW(Threshold, Nepoch)                  (1)

where DCW(Threshold) is the optimal SMILES-based 
descriptor;  C0 and C1 are regression coefficients. 

The DCW(Threshold, Nepoch) is calculated as follows:

DCW(Threshold,Nepoch)  = w*CW(ATOMPAIR) + 
+ x*CW(BOND) + y*CW(NOSP) + z*CW(HALO) +    (2)
+ α*∑ CW(Sk ) + β*∑CW(SSk) + γ*∑CW(SSSk)
          
where ATOMPAIR, BOND, NOSP, and HALO are 
SMILES attributes which are defined according to [45].  

For SET 1, the descriptor was calculated with w=1;  
x=0;  y=0;  z=0;  α=1; β=1; and γ=1. For SET 2 and SET 
3, the descriptor was calculated with w=1;  x=1;  y=1;  
z=1;  α=1; β=1; and γ=1. In other words, the BOND, 
NOSP, and HALO do not improve the predicting power 
of the CORAL model for SET 1. 

SMILES is a sequence of symbols which are a 
representation of a molecular structure. There are 
symbols which themselves are representations of 
a molecular feature, e.g. ‘c’, ‘C’, ’N’, etc. There are 
undivided pairs of symbols which represent a molecular 
feature, e.g. ‘Cl’, ‘Br’, ‘@@’, etc. We have denoted both 
of these types of information as SMILES atoms (Sk). SSk 
and SSSk are combinations of two and three SMILES 
atoms (e.g. if the SMILES representation is ABCDE, the 
SSk are AB, BC, CD, and DE; similarly SSSk are ABC, 
BCD, and CDE. In order to avoid situations where the 
same molecular fragment is represented twice (i.e., AB 
and BA), the SSk and SSSk are ordered according to 
ASCII codes of symbols). CW(x) is the correlation weight 
for a SMILES attribute x (x = ATOMPAIR, BOND, NOSP, 
HALO,  Sk,  SSk, and SSSk). Each SMILES attribute is 
represented by a sequence of twelve symbols. The first 
four symbols are the first zone; the second four symbols 
are the second zone; finally, the third four symbols are 
the third zone. All three zones are necessary for the 
SMILES attributes which involve three SMILES atoms 
(i.e., SSSk). The SSk are represented in the first and 
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Table 1. An  example  of  the  DCW(Threshold,  Nepoch)  calculation:   SET 1, split A.

  
  SMILES = Nc2cccc(Sc1ccccc1)c2C#N

Structure =
NH2

S

N

DCW(Threshold, Nepoch) =18.6437

SAk CW(SAk) NTRN NCLB NTST

N...........       0.0542    37    12    15

c...........      -0.6194    37    12    15

2...........      -0.4981    37    12    15

c...........      -0.6194    37    12    15

c...........      -0.6194    37    12    15

c...........      -0.6194    37    12    15

c...........      -0.6194    37    12    15

(...........      -0.5510    37    12    15

S...........      -0.6540    37    12    15

c...........      -0.6194    37    12    15

1...........      -0.7230    37    12    15

c...........      -0.6194    37    12    15

c...........      -0.6194    37    12    15

c...........      -0.6194    37    12    15

c...........      -0.6194    37    12    15

c...........      -0.6194    37    12    15

1...........      -0.7230    37    12    15

(...........      -0.5510    37    12    15

c...........      -0.6194    37    12    15

2...........      -0.4981    37    12    15

C...........       1.3530    37    12    15

#...........       0.2165    37    12    15

N...........       0.0542    37    12    15

c...N.......       0.0     1     2     0

c...2.......      -0.6625    37    12    15

c...2.......      -0.6625    37    12    15

c...c.......      -0.6491    37    12    15

c...c.......      -0.6491    37    12    15

c...c.......      -0.6491    37    12    15

c...(.......       0.4540    37    12    15

S...(.......       1.9950    37    11    13

c...S.......       2.0459    11     4     4

c...1.......      -0.7105    37    12    15

c...1.......      -0.7105    37    12    15

c...c.......      -0.6491    37    12    15

c...c.......      -0.6491    37    12    15

c...c.......      -0.6491    37    12    15

c...c.......      -0.6491    37    12    15

c...1.......      -0.7105    37    12    15

1...(.......       0.8246    27     9     8

c...(.......       0.4540    37    12    15

c...2.......      -0.6625    37    12    15

C...2.......       1.6020    34    10    11

C...#.......       0.1605    37    12    15

N...#.......       0.0437    37    12    15

N...c...2...       0.0     1     1     0

c...2...c...      -0.7041    37    12    15

c...c...2...       1.2980    37    12    15

c...c...c...       2.1520    37    12    15

c...c...c...       2.1520    37    12    15

c...c...(...       0.3510    37    12    15

c...(...S...       2.1980    14     2     5

c...S...(...       3.7750    11     3     2

S...c...1...       2.1990     4     2     3

c...1...c...      -0.6115    37    12    15

c...c...1...      -0.7105    37    12    15

c...c...c...       2.1520    37    12    15

c...c...c...       2.1520    37    12    15

c...c...c...       2.1520    37    12    15

c...c...1...      -0.7105    37    12    15

c...1...(...       1.2000    27     9     8

c...(...1...       1.7980    18     5     6

2...c...(...       0.0282    35    11    12

c...2...C...       1.1437    34    10    11

2...C...#...       1.1532    34    10    11

N...#...C...       0.3010    37    12    15

NOSP10000000*       1.8655     8     3     4

HALO00000000       2.4720    20     8     7

BOND01000000       2.4845    11     4     4

++++N---B3==      -0.6103    37    12    15

*)NOSP10000000 indicates the presence of nitrogen and absence of oxygen, sulphur, and phosphorus;
HALO00000000 indicates the absence of fluorine, chlorine, and bromine;
BOND01000000 indicates the presence of triple covalent bonds and absence of double bonds and stereo chemical bonds;
++++N---B3== indicates the presence of nitrogen and triple covalent bonds;
NTRN, NCLB, and NTST are the numbers of a given SAk in the sub-training, calibration, and test sets, respectively.

SAk CW(SAk) NTRN NCLB NTST
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second zones. The Sk are located in the first zone. 
Vacant positions in this twelve-symbols representation 
are indicated by dots (Table 1). 

The values of  CW(x) are calculated with the Monte 
Carlo method. The classic scheme is to build a model that 
is satisfactory for the training set and evaluate whether 
the model is also appropriate for the external test set. 
However, the balance of correlations seems a more 
realistic approach. This approach, based on the split 
of the training set into sub-training and calibration sets, 
aims  to avoid overtraining by means of the control of 
the statistical quality of the model for the calibration set. 
Thus, the calibration set plays the role of a ‘preliminary 
test set’.

The correlation weights of rare molecular fragments 
and physicochemical situations lead to improvement of 
the statistical quality for compounds which are involved 
in the sub-training or calibration sets. Thus, a reliable 
model must be based on molecular fragments which 
are not rare. For this reason, we introduced a threshold 
to select SMILES attributes which are ‘not rare’. If 
the threshold is set to five, then all SMILES attributes 
(including ATOMPAIR, BOND, NOSP, HALO, Sk, SSk, 
and SSSk) which take place only in four (or less) SMILES 
representations withinthe training set will be classified 
as rare. Correlation weights for these attributes will be 
defined as zero. 

In addition, the number of epochs of the Monte 
Carlo optimization (Nepoch) is an important parameter: 
if Nepoch is large, overtraining can result (i.e., very 
good statistical characteristics for training set and poor 
statistics for the test set); conversely, if Nepoch is small, 
one can obtain poor statistics for both training and test 
sets. Thus, an average value of the Nepoch parameter 
should be defined for the CORAL models.

3. Results and discussion
The statistical quality of QSAR models for the three 
above-mentioned endpoints calculated with the CORAL 
software is a mathematical function of two parameters 
of the Monte Carlo optimization: i.e., the threshold that 
is used to define rare and not rare attributes, and the 
number of epochs of the optimization [45-47]. Fig. 1 
shows shows representations of R2

test = F(Threshold, 
Nepoch) for SET 1, SET 2, and SET 3. The preferred values 
of the threshold (T*) and the number of epochs of the 
Monte Carlo optimization (N*) vary for each split into the 
sub-training, calibration and test set.  We deem that the 
statistical quality of a CORAL model can be robust if the 
majority of molecular features (extracted from SMILES) 
take place in the sub-training and calibration sets.

Table 2 shows best models which were obtained by 
the classic scheme, the balance of correlations without 
use of the global attributes (ATOMPAIR for SET 1, 
ATOMPAIR, BOND, NOSP, and HALO for SET 2 and 
3), and the balance of correlations with use of the global 
attributes. One can see (Table 2) that the balance of 
correlations method produced a superior model in 
comparison with the classic scheme, and the use of the 
aforementioned global attributes improves the predictive 
potential of the CORAL models for SET 1, SET 2 and 
SET 3. 

The statistical characteristics of the models for 
SET 1, SET 2, and SET 3 were verified with the predictive 
ability criteria suggested by Golbraikh and Tropsha [48] 
and by Roy and Roy [49]. The verification  is presented 
in the Supplementary materials section. The majority of 
the suggested models show predictive ability according 
to above-mentioned criteria. 

The statistical quality of QSAR models for SET 1 
[5] is n=39, r2=0.96, s=0.286 (training set) and n=15, 
r2=0.89, s=0.489 (test set). Thus, the statistical quality 
of the CORAL model can be better estimated (Table 2). 
In [6], the best R2

pred (r2
LOO) for 13 compounds of the test 

set is 0.520. Hence, the CORAL models are better for 
the endpoint of SET 2 (Table 2). The predictive model 
for pEC50 of fullerene derivatives described by Durdagi 
et al. [17] is statistically characterized by n=48, r2=0.993, 
s=0,127 (training set) and r2=0.744, s=0.755 (test set). 
The statistical quality of the CORAL models is similar [17]. 

It is to be noted that for SET 1, all models show 
predictive ability according to the criteria of Golbraikh 
and Tropsha [38] and Roy and Roy [39], but for SET 2 
and SET 3, there are splits which have models which are 
not predictive according to these criteria (SET 2: splits A, 
B, D, and E; SET 3: splits A, B, C, and D). According to 
the criteria of Golbraikh and Tropsha, the following splits 
do not have predictive ability:  B, D, E for SET 2 and 
A, C, D for SET 3. According to the criterion suggested 
by Roy and Roy, split B and split D in SET 3 do not 
have predictive ability. Thus the criteria of Golbraikh and 
Tropsha are in agreement with the criterion suggested 
by Roy and Roy only for split D in SET 3. In any 
case, the above mentioned criteria are very useful for 
comparison of a group of splits. In particular, one can 
see (Table 2) that SET 1 has stable statistical quality for 
all splits, whereas SET 2 and SET 3 have a wide range 
of statistical quality that considerably varies by different 
splits of compounds into the training and test sets.  

We have selected the following models (Fig. 2):

For SET 1, split A
pIC50 =   0.0008 (± 0.02529) +    
                       + 0.1212 (± 0.0006) * DCW(4,10)       (3)
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n=47, r2=0.9583, q2=0.9543, s=0.293, F=1035 
(sub-training set);
n=19, r2=0.9722, s=0.311 (calibration set);
n=16, r2=0.9465, s=0.351 (test set);

For SET 2, split A
pIC50 =   0.6353 (± 0.0482) + 
                       + 0.0599 (± 0.0012) * DCW(4,18)        (4)
n=37, r2=0.6007, q2=0.5595, s=0.629, F=53 
(sub-training set);
n=12, r2=0.9786, s=0.576 (calibration set);
n=15, r2=0.8619, s=0.484 (test set);

For SET 3, split A
pEC50 =   0.0672 (± 0.1181) + 
                        + 0.0231 (± 0.0005) * DCW(0,18)       (5)

n=27, r2=0.8504, q2=0.8210, s=0.504, F=142 
(sub-training set);
n=15, r2=0.9757, s=0.728 (calibration set);
n=6, r2=0.9541, s=1.48 (test set).

Having data on the correlation weights obtained in 
three (or more) runs of the Monte Carlo optimization 
method, one can extract SMILES attributes which 
have positive correlation weights in all runs of the 
optimization. Such SMILES attributes can be qualified 
as stable promoters of an endpoint increase. The stable 
promoters of increase for an endpoint can be used to 
construct a hypothetical compound with large value of 
an endpoint. However, an attribute should be a promoter 
of increase (i) for all runs of the Monte Carlo optimization 
(ii) for all splits into the sub-training, calibration, and 

Table 2. 

Classic system Balance of correlations without ATOMPAIR Balance of correlations with ATOMPAIR

Correlation coefficients between experimental and predicted values of logIC50 for TIBO derivatives (SET 1)

split training Test Sub-training Calibration Test Sub-training Calibration Test 

A 0.9746 0.9088 0.9258 0.9685 0.9181 0.9494 0.9672 0.9598

B 0.9779 0.8955 0.9003 0.9306 0.8971 0.9393 0.9837 0.9247

C 0.9767 0.9081 0.9310 0.9544 0.9325 0.9295 0.9561 0.9427

D 0.9875 0.8581 0.9331 0.9859 0.9167 0.9554 0.9900 0.9395

E 0.9612 0.9045 0.9217 0.9788 0.9218 0.9319 0.9850 0.9418

F 0.9752 0.8932 0.9423 0.9468 0.9573 0.9454 0.9486 0.9619

Correlation coefficients between experimental and predicted values of logIC50 for 2-amino-6-arylsulfonylbenzonitriles (SET 2)

split training Test Sub-training Calibration Test Sub-training Calibration Test 

A 0.7092 0.7346 0.6249 0.9682 0.8575 0.6025 0.9783 0.8658

B 0.7203 0.8187 0.4746 0.8565 0.9374 0.4653 0.8598 0.9414

C 0.7674 0.9084 0.7214 0.9363 0.9159 0.7291 0.9336 0.9206

D 0.5163 0.9555 0.4285 0.9054 0.9684 0.4064 0.8988 0.9720

E 0.6638 0.7576 0.5373 0.9765 0.9730 0.5263 0.9821 0.9770

F 0.6801 0.9010 0.5055 0.9575 0.8988 0.4785 0.9687 0.9065

Correlation coefficients between experimental and predicted values of the median effective concentration (pEC50) for fullerene C60 derivatives (SET 3)

split training Test Sub-training Calibration Test Sub-training Calibration Test 

A 0.7798 0.8902 0.8540 0.9789 0.9579 0.8523 0.9780 0.9611

B 0.7303 0.3892 0.7248 0.8640 0.9635 0.7272 0.8598 0.9824

C 0.8026 0.2182 0.8522 0.9676 0.8219 0.8564 0.9670 0.8259

D 0.7699 0.5168 0.9453 0.8261 0.9648 0.9545 0.8206 0.9838

E 0.6765 0.8616 0.8672 0.6533 0.9601 0.8633 0.6571 0.9689

F 0.2672 0.8748 0.5925 0.3340 0.9854 0.6045 0.3646 0.9869

Correlation coefficients between experimental and predicted endpoints value for models constructed with the classic scheme 
(i.e., ‘training-test system’) and models obtained by means of balance of correlations (i.e., ‘sub-training-calibrations-test system’), with 
and without correlation weights of the ATOMPAIR attribute. 
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Figure 1. The graphical represenation of the selection of the preferred threshold (T*) and the number of epochs (N*) for SET 1, SET 2, and SET 3.
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test set, and (iii) the attribute should have considerable 
prevalence in the sub-training set and in the calibration 
set. In addition, hypothetical promising compounds 
should be highly similar to  compounds characterized 
by high activity.  Table 3 contains examples of SMILES 
attributes which are promoters of increase for endpoints 
related to SET 1, SET 2, and SET 3. Table 4 shows 

examples of compounds which can be effective anti-HIV 
agents.

The Supplementary materials section contains 
the statisitical characteristics of all described models, 
graphical representations of all described models, 
and lists of six splits for the three aforementioned 
datasets. 

Figure 2. QSAR  models  for  anti-HIV-1 activity (pIC50) for SET 1 (Split A) and SET 2 (Split A). QSAR  models for the median effective concentration   
        (pEC50) for fullerene C60 derivatives for SET 3 (Split A).
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Table 4. The search for the promising compound according to the calculated value of the endpoints.

SMILES, structure, ID and experimental 
endpoint value

SMILES, structure and calculated endpoint 
value

Comment

C/C(C)=C\CN1Cc3c(Cl)ccc2NC(=S)N(C[C@H]1C)c23

N

Cl

N
H

S
N

H

ID=3, SET 1
pIC50=8.37

C/C(C)=C\CN1Cc3c(Cl)c(cc2NC(=S)N(C[C@H]1C)c23)C=C

 

N

Cl

N
H

S
N

H

pIC50=9.048

The fragment C=C- 
is added

Clc1cc(cc(Cl)c1)S(=O)(=O)c2cccc(N)c2C#N

Cl

Cl

S
O

O

NH2

N

ID=59, SET 2
pIC50=4.155

Clc1cc(cc(Cl)c1)S(=O)(=O)c2cc(C#N)cc(N)c2C#N

Cl

Cl

S
O

O

NH2

N

N

PIC50=4.513

The fragment N≡C- 
is added

NC(=O)C%30=C(C(N)=O)C(C(N)=O)=C(C(N)=O)C%2
9%33C2=C%28C=1c%27c8C=%22C=1C=%24C2=C%
32C%25=C7c6c%31c5c(c%26C=4C%29C%28=C3c%2
7c9C%10=C3C=4C=%11c%26c%12c5c%13c6C%21=C
7C=%23C=%14C(C%15c8c9C%16C%20=C%10C=%11
C=%19C%12=C%13C%18=C%21C=%14C%17(C(C(N)
=O)=C(C(N)=O)C(C(N)=O)=C(C(N)=O)C%15%16%17)

C%18C=%19%20)C=%22C=%23C=%24%25)
C%30%33C%31%32

O

O

O

O
NH2

NH2

NH2

NH2

NH2

NH2

NH2

NH2

O

O

O

O

ID=42, SET 3 
pEC50=7.40

CC(=O)CC(=O)C%29=C(C(N)=O)C%31%30C%17=C
3C4C%28c%27c5c%33C=6C=7C2=C1c%33c%26C%
24=C1C%23=C%22C2C8%32C(C(N)=O)=C(C(N)=O)
C(C(N)=O)=C(C(N)=O)C%13%32c%21c%15c%12c%1
4C=9C(C3=C%11C4=C5C=6C=%10C(C=78)=C(C=
9C=%10%11)C%12%13)=C%18c%14c%16c%15c%20

C%19=C%16C(=C%17%18)C%31C%25=C%19C(=C%23c%20
c%21%22)C%24=C%25C(c%26%27)
C%28%30C(C(N)=O)=C%29C(N)=O

O

O

O

O
NH2

NH2

NH2

NH2

NH2

NH2

NH2

O

O

O

O

CH3
O

pEC50=7.758

 

The fragment -NH2 
is changed to

-CH2-C(=O)-CH3

Table 3. 

SET Promoter of increase for endpoints Comments

1 C...=....... Presence of double bonds involved carbon atom

c...3....... Presence of an aromatic fragment together with three rings

N...(...C... Presence of branching in the molecular skeleton that starts from carbon to nitrogen or 
vice versa 

S...=....... Presence of sulphur atom connected with double covalent bond

/........... Presence of cis- or trans- isomerism

2 N...#...C... Presence of -C≡N

2...C...#... Presence of two rings and triple bonds

c...c...c... Presence of an aromatic fragment

c...c...2... Presence of an aromatic fragment connected to a ring

3 =...C...(... Presence of fragment with the branching together  double bonds

++++O---B2== Presence of (i) oxygen; and (ii) presence of double bond, which can be unconnected 
with the oxygen

The SMILES attributes which have stable positive values of the correlation weights for all starts of the Monte Carlo method optimization 
and for all splits.
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4. Conclusions
The CORAL software produced robust models for 
three data sets (SET 1: anti-HIV-1 activity of TIBO 
derivatives; SET 2: anti-HIV-1 activity of 2-amino-6-
arylsulfonylbenzonitriles; and SET 3: median effective 
concentration of fullerene derivatives). The balance of 
correlations method yielded better prediction than the 
classic scheme for all six random splits for each set of 
data. The global SMILES attributes (ATOMPAIR, BOND, 
NOSP, and HALO) can improve the predictive potential 
of the CORAL models for the aforementioned sets. 
The split of available data into the training set (used 
to build the model) and external test set can have a 

considerable influence upon the statistical quality of 
the model. The CORAL models allow a mechanistic 
interpretation (based on the list of molecular features 
extracted from SMILES representations with stable 
positive correlation weights) and can be used to search 
for hypothetical effective anti-HIV agents (Table 4).
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