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a b s t r a c t

CORAL (CORrelation And Logic) software can be used to build up the quantitative structure e property/
activity relationships (QSPR/QSAR) with optimal descriptors calculated with the simplified molecular
input line entry system (SMILES). We used CORAL to evaluate the applicability domain of the QSAR
models, taking a model of bioconcentration factor (log BCF) as example. This model’s based on a large
training set of more than 1000 chemicals. To improve the model is predictivity and reliability on new
compounds, we introduced a new function, which uses the Delta(obs)¼ log BCF(expr)� log BCF(calc) of
the predictions on the chemicals in the training set. With this approach, outliers are eliminated from the
phase of training. This proved useful and increased the model’s predictivity.

� 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

The bioconcentration factor (BCF) is useful to characterize the
environmental behavior of a chemical, particularly to see whether
it has an accumulative effect. BCF defines the ratio between the
concentration in the organism and the medium. This is an impor-
tant characteristic from a regulatory point of view, since it is used in
the GHS and REACH [1].

Besides the experimental model, which uses more than one
hundred fish, takes at least one month and costs several tens of
thousands of euros for each substance, quantitative structure e

property relationships (QSPR) have been used to model this
endpoint [2e12]. Thus, like in many other cases, developing the
computer models for predicting the BCF of chemicals is motivated
by the fact that the experimental measurements are time-
consuming, expensive, and not feasible for the many thousands of
chemicals of potential regulatory interest [13].

The aim of the present study is to build up a QSPR model for log
BCF and to define its applicability domain. The definition is based
on the QSPR model of the endpoint which is calculated as Del-
ta¼ log BCF(obs)� log BCF(calc). This can be useful to classify as

potential outliers the substances of the external test set which have
large Delta values.

2. Method

2.1. Data

The experimental data for the log BCF were taken from Ref. [14],
but for six compounds the log BCF were recalculated taking into
account additional experimental data on the log BCF (CAS 361377-
29-9, 892-20-6, 25155-30-0, 535-77-3, 71751-41-2, and 119446-
68-3) and one compound was removed because it was very large
molecule (CAS 71751-41-2). Three random splits A, B, and C (with
approximately 50% of substances in the sub-training set, 30% in the
calibration set, and 20% in the test set) were examined. In total were
examined 1035 substances.

2.2. Optimal descriptors

SMILES is a representation of the molecular structure. One can
calculate with SMILES a molecular descriptor similarly to the well-
known descriptors calculatedwithmolecular graphs. SMILES-based
optimal descriptors for QSPR modeling of log BCF and the property
Delta¼ log BCF(obs)� log BCF(calc) were calculated respectively as
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DCWðTÞ ¼ CWðNOSPÞ þ CWðHALOÞ þ CWðBONDÞ þ
X

CWðSkÞ
þ
X

CWðSSkÞ; (1)

DCWðTÞ ¼ CWðNOSPÞ þ CWðHALOÞ þ CWðBONDÞ þ
X

CWðSkÞ
þ
X

CWðSSkÞ þ
X

CWðSSSkÞ (2)

T is the threshold. If the number of SMILES in the sub-training set
which contain an attribute, A is less than T, then CW(A)¼ 0. Thus
the T influences the modeling process. CW is the correlationweight
used for modeling. NOSP index and HALO index are descriptors
which are mathematical functions of the presence in molecules of
combination of chemical elements (Tables 1 and 2). BOND index is
the mathematical function of the presence of different chemical
bonds (Table 3). Sk, SSk, SSSk are one-, two-, and three-element
SMILES attributes [14].

Eq. (1) has been used to build up BCF models and more details
can be found in literature [14]. Briefly, the optimal descriptors (Eqs.
(1) and (2)) are mathematical functions of the following parame-
ters: (a) SMILES; (b) threshold; and (c) the number of epochs
(Nepoch) of the optimization. The numerical data for these param-
eters were selected empirically (Table 4). The statistical character-
istics of the log BCF model for the test set were used as the criteria
for this selection.

Models of log BCFwere built up with descriptors calculatedwith
Eq. (1). Models of Delta(obs) were built up with descriptors calcu-
lated with Eq. (2).

For three random splits the following steps have been done.

1. Selection of the preferable threshold, T, and the number of
iterations for the Monte Carlo optimization, Nepoch, (Table 4);

2. Building up the general log BCF model, i.e., experiment 1
(Fig. 1);

3. Calculation of the “observed” Delta(obs)¼ log BCF(expr)�
log BCF(calc);

4. Building up the Delta(obs) model as a mathematical function of
the molecular structure represented by SMILES, i.e., Delta
(calc)¼ F(SMILES);

5. Calculation of the outliers as structures with Delta(calc)
without range (d� d; dþ d) according to scheme represented
in Fig. 2;

6. Experiment 2 (Fig. 1);
7. Experiment 3 (Fig. 1).

3. Results and discussion

Fig. 3 shows co-evolutions of correlations between the DCW(T)
and log BCF for the sub-training, calibration, and test sets, for splits
A, B, and C. We used 35 epochs of the Monte Carlo optimization
which involved two phases. In the first phase the correlation
coefficient between DCW(T) and log BCF increases for the sub-
training, calibration, and test sets. In the second phase the corre-
lation coefficient increases for the sub-training and calibration sets,
but decreases for the test set. Thus, the range of transition from the
first to second phase is an indicator of the model with the
maximum predictive potential.

Table 1
Calculation of the NOSP index.

N O S P Comments

0 0 0 0 Nitrogen, oxygen, sulphur, and phosphorus are absent
0 0 0 1 The molecule only contains phosphorus
0 0 1 0 The molecule only contains sulphur
0 0 1 1 The molecule contains sulphur and phosphorus
0 1 0 0 The molecule only contains oxygen
0 1 0 1 The molecule contains oxygen and phosphorus
0 1 1 0 The molecule contains oxygen and sulphur
0 1 1 1 The molecule contains oxygen, sulphur, and phosphorus
1 0 0 0 The molecule only contains nitrogen
1 0 0 1 The molecule contains nitrogen and phosphorus
1 0 1 0 The molecule contains nitrogen and sulphur
1 0 1 1 The molecule contains nitrogen, sulphur, and phosphorus
1 1 0 0 The molecule contains nitrogen and oxygen
1 1 0 1 The molecule contains nitrogen, oxygen and phosphorus
1 1 1 0 The molecule contains nitrogen, oxygen, and sulphur
1 1 1 1 The molecule contains nitrogen, oxygen, sulphur, and phosphorus

Table 2
Calculation of the HALO index.

F Cl Br Comments

0 0 0 Fluorine, chlorine and bromine are absent
0 0 1 The molecule only contains bromine
0 1 0 The molecule only contains chlorine
0 1 1 Molecule contains chlorine and bromine
1 0 0 The molecule only contains fluorine
1 0 1 The molecule contains fluorine and bromine
1 1 0 The molecule contains fluorine and chlorine
1 1 1 The molecule contains fluorine, chlorine, and bromine

Table 3
Calculation of the BOND index.

¼ # @ Comments

0 0 0 There are no double, triple, or stereo chemical bonds
0 0 1 The molecule only contains stereo chemical bonds
0 1 0 The molecule only contains triple bonds
0 1 1 The molecule contains triple and stereo chemical bonds
1 0 0 The molecule only contains double bonds
1 0 1 The molecule contains double bonds and stereo chemical bonds
1 1 0 The molecule contains double and triple bonds
1 1 1 The molecule contains double, triple, and stereo chemical bonds

Table 4
Definition of preferable threshold and Nepoch.

Split Threshold Nepoch r(test)2

A 1 20� 1 0.796� 0.001
B 1 8� 1 0.733� 0.001
C 3 10� 1 0.751� 0.001

Fig. 1. The schemes of experiments 1, 2, and 3.
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The correlation coefficient between the experimental log BCF
and calculated log BCF is a mathematical function of the threshold
and Nepoch. Analysis of the surface for the mathematical function
r(test)2 ¼ F(Threshold, Nepoch) shows that there is a maximum of the
r(test)2 for splits A, B, and C. Thus, one can use the surface to define
the preferable threshold and the number of epochs for the Monte
Carlo optimization (Table 4).

The majority of substances have a typical (‘average’) behavior
and are the basis for building up the log BCF model. However, there
are substances with atypical behavior in both the sub-training and
calibration sets (Fig. 4). During the first phase of the Monte Carlo
optimization the main contribution for building up the model
comes from information about the substances with ‘average’
behavior. When the real information contained in these runs out,
overtraining starts. The essence of overtraining is a modification of
the correlation weights of available attributes for improving only
the model for the sub-training set. Unfortunately, that reduces the
predictive potential of the model for the external test set. However,
the preferable Nepoch can be selected by analyzing the co-evolutions
of correlations (Fig. 3), and the function r(test)2 ¼ F(Threshold, Nepoch)
serves to select both the preferable Nepoch and the preferable
threshold.

Table 5 illustrates the statistical quality of the log BCF models
using Eq. (2) for experiments 1, 2, and 3 with splits A, B, and C. The

statistical quality of the model for the substances selected accord-
ing to rule:

DeltaðcalcÞ˛ðd� d; dþ dÞ (3)

is best for all three splits.
The model for log BCF (split A, experiment 2) is the following

logBCF ¼ 0:0037ð�0:0037Þþ0:0922ð�0:0001Þ*DCWð1Þ (4)

n¼ 502, r2¼ 0.5537, QLOO
2 ¼ 0.5500, RMSE¼ 0.897, F¼ 620 (sub-

training set);
n¼ 322, r2¼ 0.7780, Rpred

2 ¼ 0.7751, RMSE¼ 0.627, F¼ 1122
(calibration set);
n¼ 165, r2¼ 0.8277, Rpred

2 ¼ 0.8241, RMSE¼ 0.545, F¼ 783;
k¼ 1.0321; k0 ¼ 0.9206; Rm

2 ¼ 0.795 (test set)

where

Q2
LOO ¼1�

Ph
Ypred � Y

i2
P½Y � Yðsub� trainingÞ�2�

Y and Ypred on sub� training set
�

ð5Þ

R2pred ¼1�
Ph

Ypred � Y
i2

P½Y � Yðsub� trainingÞ�2�
Y and Ypred on calibration or test set

�
ð6Þ

Y and Ypred are experimental and predicted values of the log BCF,
respectively; Yðsub� trainingÞ is an average of the experimental
values of the log BCF over the sub-training set.

These values above indicate that the model is good, judging by
criteria indicated in the literature: slopes k and k0 should be in the
range 0.85e1.15 [15], and Rm

2 should be larger than 0.5 [16]. Fig. 4
shows the model calculated with Eq. (4).

In all attempts to define the applicability domain with Eq. (3)
(i.e., for splits A, B, and C; in experiments 1, 2, and 3) the statis-
tical quality was better for substances classified within the appli-
cability domain than those classified as outliers. But unfortunately
some substances which are not outliers were classified as outliers.
However, even under those circumstances, this approach can be
useful for QSAR analysis. Software and data for described

Fig. 2. The scheme of calculation of the domain of applicability (DA) for the log BCF
model. Table 5 gives the numerical data on the d and d for splits A, B, and C.

Fig. 3. Co-evolution of correlations between experimental log BCF and log BCF calculated for the sub-training, calibration, and test sets. Each version of the DCW(T) calculated with
Eq. (1) or (2), has Nepoch that produces a maximum of the determination coefficient for test set. The experiment 1 for split A is shown here.
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computational experiments are available on the Internet at http://
www.insilico.eu/coral.

4. Conclusions

We have introduced a new function to optimize QSPR models
avoiding the use of chemicals characterized by poor predictions.
This scheme, presented in Fig. 2, gave for all splits a robust appli-
cability domain of the model (Table 5). Predictive ability of QSPR
model for log BCF obtained in this study is better than BCF model
that has been previously reported in literature [14].
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Fig. 4. Experimental log BCF and log BCF calculated with Eq. (4) (split A, experiment 2).

Table 5
Statistical characteristics of the models of the bioconcentration factor for three
random splits. The best models are indicated by bold.

Set n r2 QLOO
2 or Rpred2 RMSE F

Split A
Experiment 1, d ¼ 0:001, d¼ 0.638 (Fig. 2)
Training 502 0.5916 0.5885 0.858 724
Calibration 322 0.7950 0.7924 0.602 1241
Test 211 0.7912 0.7875 0.580 792

Experiment 2
Training 502 0.5537 0.5500 0.897 620
Calibration 322 0.7780 0.7751 0.627 1122
Test 165 0.8277 0.8241 0.545 783

Experiment 3
Training 502 0.5628 0.5593 0.888 644
Calibration 322 0.7757 0.7727 0.630 1106
Test 46 0.5943 0.5579 0.772 64

Split B
Experiment 1, d ¼ 0:001, d¼ 0.640 (Fig. 2)
Training 484 0.5976 0.5943 0.915 716
Calibration 343 0.7384 0.7353 0.629 962
Test 208 0.7126 0.7077 0.652 511

Experiment 2
Training 484 0.5892 0.5857 0.924 691
Calibration 343 0.7340 0.7308 0.632 941
Test 151 0.7439 0.7380 0.628 433

Experiment 3
Training 484 0.5978 0.5945 0.915 716
Calibration 343 0.7468 0.7437 0.619 1006
Test 57 0.5999 0.5742 0.706 82

Split C
Experiment 1, d ¼ 0:000, d¼ 0.636 (Fig. 2)
Training 451 0.5419 0.5374 0.956 531
Calibration 367 0.7325 0.7296 0.671 999
Test 217 0.7336 0.7291 0.643 592

Experiment 2
Training 451 0.5433 0.5388 0.954 534
Calibration 367 0.7329 0.7301 0.670 1002
Test 150 0.7617 0.7560 0.620 473

Experiment 3
Training 451 0.5360 0.5313 0.962 519
Calibration 367 0.7366 0.7338 0.668 1021
Test 67 0.6735 0.6546 0.686 134
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