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Optimal descriptors calculated with simplified molecular input line entry system (SMILES), hydrogen-
suppressed molecular graph (HSG), hydrogen-filled molecular graph (HFG), and graph of atomic orbitals
(GAO) have been studied as a basis to build up models for mutagenicity of polyaromatic amines. The optimal
descriptors are calculated with correlation weights of the molecular fragments. In the case of the molecular
graph, chemical elements (C, N, O, etc.) or their electronic structure (1s2, 2p3, 3d10, etc.) together with their
Morgan vertex degrees are the basis for calculation of the descriptor. In the case of SMILES, chemical elements
(C, O, N, etc.) together with presence of cycles (1, 2, 3, etc.), cis-, trans- isomerism (‘\’ and ‘/’) and other are the
basis for calculation of the descriptor. In both these cases, descriptors are a mathematical function of the
correlation weights of the above-mentioned molecular features. The correlation weights are calculated by the
Monte Carlo optimization (the target function is the correlation coefficient between experimental and
predicted endpoint values). SMILES-based optimal descriptors have shown the preferable predictive ability.
The CORAL software (http://www.insilico.eu/coral/) was used to build up models of the mutagenic potential
as the function of the molecular structure. Analysis of three probes of the Monte Carlo optimization with six
random splits has shown there are three kinds of the molecular features encoded by SMILES attributes:
promoters of increase/decrease of mutagenic potential and ones without defined role.
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1. Introduction

Mutagenicity is a toxicity endpoint associated with the chronic
exposure to chemicals. There is a similarity of the mutagenicity
mechanism with carcinogenicity mechanisms of action. The mutage-
nicity can be used for detection of substances, potentially hazardous
to human health [1].

Quantitative structure–property/activity relationships (QSPR/QSAR)
can be useful in praxis of the risk assessment of large sets of various
substances [1–10]. Mutagenicity is an important factor in assessing
the hazardous effects of chemicals on both human and environmental
health. Therefore, it is not surprising that various authors have
attempted to predict mutagenicity of chemicals from their structure.
According to Organisation for Economic Co-operation and Devel-
opment (OECD) principles [11] QSARmodel should be associatedwith
the following information:

1) a defined endpoint
2) an unambiguous algorithm
3) a defined domain of applicability
4) appropriatemeasures of goodness-of-fit, robustness and predictivity
5) a mechanistic interpretation, if possible.

The main reason for the criticisms [12–14] of QSPR/QSAR is poor
predictions for external compounds. Probably, the reasons for the
criticisms can be reduced if researchers will be concentrated on the
statistical quality and reproducibility of QSAR model for external
compounds. Apparently, there are good splits into the training and
test set (with a very good model that is obtained by a suggested
approach) and there are other splits where the suggested approach
can give a modest or even poor model.

The aim of this study is the comparison of QSAR obtained with the
optimal SMILES-based descriptors and the graph-based descriptors in
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the modelling of the mutagenic potential of aromatic amines. Appar-
ently, both the graph and SMILES are the representation of themolecular
structure (Fig. 1). Thus, the comparison of the above-mentioned
representations is interesting at least from heuristic point of view.

2. Method

2.1. Data

Data on mutagenic potentials of the set of 95 aromatic and
heteroaromatic amines were taken from Ref. [15]. The mutagenic
activity in Salmonella typhimurium TA98+S9 microsomal reparation is
expressed as the natural logarithm of R, where R is the number of
revertants per nanomole.

2.2. Descriptors

Optimal graph-based and SMILES-based descriptors have been
examined in this study. The graph-based descriptors were calculated
as the following

DCW Tð Þ = ∑CW GAkð Þ ð1Þ

where GAk is an attribute of k-th vertex in graph, i.e. vertex type and
vertex degree, CW(GAk) is the correlation weights of the GAk. Three
kinds of the graphwere studied: (1) hydrogen-suppressed graph (HSG,
Fig. 1), (2) hydrogen-filled graph (HFG, Fig. 2), and (3) graph of atomic
orbitals (GAO, Fig. 3). Vertices in theHSGandHFGare representations of
chemical elements and edges are representations of the chemical bonds
in the molecule. Vertices in the GAO are representations of atomic
orbitals. The algorithm of the translation of the HFG into GAO is
described in Ref [16]. From HSG one can obtain the GAO without 1s2

vertices (which are the representation of hydrogen; from HFG one can
obtain the GAO which involves 1s2 vertices.

Three topological invariants of the molecular graphs have been
involved in the study: vertex degree (EC0), extended connectivity of
first order (EC1), and extended connectivity of second order (EC2)
[16]. Fig. 4 contains examples of calculations of the EC1 and EC2.

Optimal SMILES-based descriptors were calculated as the following

DCW Tð Þ = α∑CW Skð Þ + β∑CW SSkð Þ + γ∑CW SSSkð Þ ð2Þ

where Sk, SSk, SSSk are SMILES attributes which contain one-, two-,
and three SMILES elements respectively; CW(Sk), CW(SSk), and CW
(SSSk) are the correlation weights of the SMILES attributes;α, β, and γ
are coefficients which can be 1 or 0, one can select model which
Fig. 1. Example of SMILES and the molecular gra
is based on the attributes of one-element (α=1, β=0,γ=0), or
model based on the Sk and SSk (α=1, β=1,γ=0), etc. T is threshold
(1,2,…5). These values are used to classify the molecular attributes
into two categories, i.e. rare and not rare (active). The attribute which is
defined as rare has the correlation weight equal to zero, consequently,
the attribute has no influence for the modelling process.

The numerical data for the correlation weights are calculated with
the Monte Carlo method optimization which provides maximal value
of correlation coefficient between experimental and calculated lnR for
the training set (classic scheme) or maximal value of the balance of
correlation with ideal slopes [17,18] or without ideal slopes [19].

The predictive potentials of the graph-basedmodel and the SMILES-
based model are mathematical functions the threshold (T) and the
number of epochs (Nepoch) of the Monte Carlo optimization (Fig. 5).
One canfind themostpredictive combinationof T andNepoch values for a
split (Fig. 6). Having data on the calculation for several splits, one can
estimate average predictive potential of the model. Apparently, the
average values of statistical characteristics of the model will be poorer
than ones for a ‘good’ split, but it will be more reliable information.

3. Results and discussion

Table 1 contains statistical quality of the models obtained with
molecular graphs (HSG, HFG, andGAO) using the extended connectivity
of zero-, first-, and second orders. The extended connectivity of first
order seems preferable version of the optimal descriptor for all types of
graphs (in fact best average correlation coefficient value (external test
set) for HSGwas obtained with EC0 (08441), but for the EC1 of HSG the
values is very similar (0.8422). We have selected model based on the
EC0 in the HSG as the best graph-based model.

Table 2 contains statistical quality of the models obtained with
SMILES. One can see that the best average correlation coefficient
(external test set) takes place for version descriptor calculated with
Eq. (2) using combination of α=1, β=0, γ=0. These models have
good predictability according to criterion Rm

2 [20,21] which should be
larger than 0.5. The SMILES-based models are the following:

Split 1

lnR = 0:0033 �0:0288ð Þ + 0:4321 �0:0057ð Þ�DCW 2ð Þ ð3Þ

n = 42; r2 = 0:7245;q2 = 0:7007; s = 1:15; F = 105 sub−training setð Þ

n = 25; r2 = 0:8257; r2pred = 0:7877; s = 0:707; F = 109 calibration setð Þ

n = 28; r2 = 0:8478; r2pred = 0:8203; R2
m = 0:8008; s = 0:700;

F = 14 test setð Þ
ph with suppressed hydrogen atoms (HSG).



Fig. 2. The molecular graph with hydrogen atoms (HFG).
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Split 2

lnR = −1:160 �0:0309ð Þ + 0:3369 �0:0061ð Þ�DCW 5ð Þ ð4Þ
n = 42; r2 = 0:6654;q2 = 0:6311; s = 1:08; F = 80 sub−training setð Þ
n = 25; r2 = 0:8257; r2pred = 0:7921; s = 0:830; F = 109 calibration setð Þ

n = 28; r2 = 0:8544; r2pred = 0:8228;R2
m = 0:7881; s = 0:829;

F = 153 test setð Þ
Split 3

lnR = −2:934 �0:0598ð Þ + 0:1925 �0:0036ð Þ�DCW 3ð Þ ð5Þ
n = 43; r2 = 0:6376; q2 = 0:6014; s = 1:14; F = 72 sub−training setð Þ
n = 25; r2 = 0:8181; r2pred = 0:7864; s = 0:869; F = 103 calibration setð Þ

n = 27; r2 = 0:8904; r2pred = 0:8753;R2
m = 0:8598; s = 0:700;

F = 203 test setð Þ

Split 4

lnR = −4:576 �0:0698ð Þ + 0:1756 �0:0031ð Þ�DCW 3ð Þ ð6Þ
n = 46; r2 = 0:6540;q2 = 0:6201; s = 1:17; F = 83 sub−training setð Þ
n = 24; r2 = 0:7320; r2pred = 0:6877; s = 0:993; F = 60 calibration setð Þ

n = 25; r2 = 0:8922; r2pred = 0:8773;R2
m = 0:8707; s = 0:629;

F = 203 test setð Þ
Split 5

lnR = 0:0008 �0:0233ð Þ + 0:3673 �0:0050ð Þ�DCW 3ð Þ ð7Þ
n = 50; r2 = 0:6764;q2 = 0:6506; s = 1:10; F = 100 sub−training setð Þ
n = 21; r2 = 0:8746; r2pred = 0:8371; s = 0:717; F = 132 calibration setð Þ

n = 24; r2 = 0:8943; r2pred = 0:8792;R2
m = 0:8215; s = 0:725;

F = 186 test setð Þ

Split 6

lnR = −0:1911 �0:0227ð Þ + 0:3869 �0:0050ð Þ�DCW 3ð Þ ð8Þ
n = 48; r2 = 0:7082;q2 = 0:6844; s = 1:05; F = 112 sub−training setð Þ
n = 25; r2 = 0:8966; r2pred = 0:8795; s = 0:844; F = 200 calibration setð Þ

n = 22; r2 = 0:8434; r2pred = 0:8183;R2
m = 0:7342; s = 0:808;

F = 108 test setð Þ

In Eqs (3)–(8), the n is the number of compounds in the set; q2 and
R2

pred are leave one out cross validation correlation coefficients; s is
the standard error estimation (or root means squared error RMSE); F
is Fischer F-ratio.

The range of correlation coefficient values for models of the
mutagenic potentials (lnR) from Ref [22] is 0.78–0.834; and the range
of standard error is 0.810–0.979. The statistical characteristics of

image of Fig.�2


Fig. 3. Graph of atomic orbitals (GAO).
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model calculatedwith topological state indices suggested by Cash [15]
are the following: n=95, r2=0.771, s=0.979, F=31 (ten-variable
model). Later, Cash et al. have improved the model: n=95, r2=0.77,
s=0.89, F=48 (six-variablemodel) [23]. Unfortunately the statistical
characteristics of aforementioned models for the external test set are
not available in Refs. [15,22,23].
We deem the most important characteristics of models calculated
with Eqs. (3)–(8) are statistical characteristics related to the external
test set. However, the correlation coefficient between experimental
and calculated lnR values and the standard error of estimation for all
95 substances are similar to the above-mentioned values from the
literature [15,22,23], the average values for six splits are the following

image of Fig.�3


Fig. 6. The preferable model can be established by analysis of the surface R2
(test)=

F(T, Nepoch).

Fig. 4. Example of calculation of the Morgan extended connectivity (EC) of first and
second orders. The zero-order EC0 is the vertex degree δ.
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r2=0.761±0.013; s=0.942±0.024 (n=95). Thus, suggested
SMILES-based models have the satisfactory statistical characteristics
for six random splits into the sub-training, calibration, and test sets.

Table 3 contains classification of SMILES attributes Sk according to
their role during three attempts of the Monte Carlo method
optimization: if the correlation weight of Sk CW(Sk) N0 in all three
runs of the optimization than the Sk is promoter of lnR increase; if CW
(Sk)b0 in all three runs of the optimization than the Sk is promoter of
lnR decrease; and if there are both CW(Sk)b0 and CW(Sk)N0 or Sk is
blocked then Sk plays an undefined role. One can see (Table 3) that,
from probabilistic point of view, ‘2’, ‘(’, and ‘3’must be classified as the
promoters of lnR increase, whereas ‘1’ and ‘N’must be classified as the
promoters of lnR decrease. Digits in SMILES are indicators of cycles of
different kinds. Brackets are indicators of the branching in the
molecular skeleton. This information can be useful in searching for
substances with low/high mutagenic potential: presence of cycles
which are represented by ‘1’ and nitrogen (sp3) is promoter of
Fig. 5. The correlation coefficient between experimental and calculated lnR values is a m
optimization.
decrease of the mutagenic potential, vice versa, cycles which are
represented by ‘2’ and ‘3’ as well as the high branching of molecular
skeleton (i.e. the large number of brackets) is a promoter of increase
of the mutagenic potential of a molecule, that is represented by a
given SMILES. Unfortunately, the role of other SMILES attributes is less
clear, from probabilistic point of view. However, one can see (Table 3)
that the role of many SMILES attributes can be changedwith change of
split into the sub-training, calibration, and test set (owing to change of
the distribution of attributes in these sets). This circumstance is
important from heuristic point of view.

The advantages of SMILES in comparisonwith graph is ability to take
into account some important molecular features, such as, presence of
cycles, cis-/trans- isomerism, the presence of sp2 and sp3 atoms, etc.
Since there are also some advantages of molecular graphs, the using of
hybrid representation of themolecular structure that takes into account
both the SMILES attributes and the graph invariants is a possible way to
improve the optimal descriptors.

Supplementary materials section contains six random splits which
were studied. One can download on the Internet CORAL software [19]
and check the suggested models.
athematical function of threshold and number of epochs of the Monte Carlo method

image of Fig.�5
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image of Fig.�4


Table 2
Statistical characteristics of the best SMILES-based model of the mutagenic potentials (lnR).

α=1, β=0, γ=0 α=1, β=1, γ=0 α=1, β=1, γ=1

S T N R2
(test) S T N R2

(test) S T N R2
(test)

1 2 48 0.8498 1 3 13 0.8387 1 5 50 0.8540
2 5 29 0.8568 2 2 40 0.8225 2 5 23 0.8692
3 3 18 0.8912 3 3 15 0.8918 3 1 12 0.8907
4 3 10 0.8912 4 3 9 0.8664 4 4 8 0.8520
5 3 31 0.9011 5 1 19 0.8660 5 4 14 0.8666
6 3 42 0.8435 6 4 46 0.8742 6 2 18 0.8430

0.8722±0.023 0.8599±0.023 0.8626±0.015

Bold is indicator of best models.
S = split.
T = threshold.
N = number of epochs of the Monte Carlo optimization.
R2

(test) = correlation coefficient between experimental and calculated lnR for the test set.

Table 1
Statistical characteristics of graph-based model of the mutagenic potentials (lnR).

EC0 EC1 EC2

Type of graph S T N R2
(test) S T N R2

(test) S T N R2
(test)

HSG 1 1 20 0.8423 1 2 14 0.8243 1 3 47 0.7685
2 5 20 0.8046 2 3 28 0.8405 2 2 13 0.8097
3 2 24 0.8962 3 3 18 0.9351 3 3 11 0.8510
4 5 46 0.8262 4 4 7 0.8069 4 1 11 0.8557
5 3 50 0.8708 5 3 20 0.9009 5 2 5 0.6977
6 4 25 0.8243 6 1 27 0.7453 6 2 13 0.7717

0.8441±0.031 0.8422±0.062 0.7924±0.054
HFG 1 2 32 0.8450 1 1 34 0.8522 1 1 25 0.7638

2 2 39 0.7710 2 1 16 0.7932 2 4 30 0.8185
3 1 50 0.8476 3 1 23 0.8608 3 1 22 0.8565
4 4 22 0.8839 4 1 33 0.8802 4 2 5 0.6452
5 3 29 0.8389 5 4 43 0.8322 5 2 50 0.8125
6 3 31 0.8123 6 3 49 0.8304 6 1 49 0.6004

0.8331±0.035 0.8415±0.027 0.8331±0.035
GAO 1 2 39 0.8421 1 2 22 0.7530 1 5 21 0.7320

2 1 28 0.7833 2 4 19 0.8074 2 4 35 0.8108
3 4 50 0.8870 3 4 19 0.9261 3 3 50 0.7620
4 1 10 0.7818 4 3 16 0.8561 4 1 4 0.6724
5 5 34 0.8334 5 3 9 0.8214 5 3 17 0.7605
6 1 49 0.8269 6 1 13 0.8453 6 2 16 0.8543

0.8257±0.036 0.8349±0.052 0.7653±0.057

Bold is indicator of best models.
S = split.
T = threshold.
N = number of epochs of the Monte Carlo optimization.
R2

(test) = correlation coefficient between experimental and calculated lnR for the test set.
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4. Conclusions

In the case of the examined 95 aromatic amines, the split into sub-
training, calibration, and test sets has considerable influence for the
accuracy of prediction. Blocking of the raremolecular featureswhich are
detectingwithmolecular graphs or SMILES can improve the accuracy of
the prediction. For each randomsplit examined in this study, there is the
most informative number of epochs of the Monte Carlo optimization,
Table 3
Statistical classification of SMILES attributes Sk into three categories: promoters of lnR
increase, promoters of lnR decrease, and SMILES attributes which are undefined or
blocked. Attributes with apparent role are marked by bold: in other words, 2 and 3 are
promoters of lnR increase; 1, N, and C are promoters of lnR decrease; and Br and S are
attributes which are not promoters of increase or decrease for lnR.

Split Promoters of lnR increase Promoters of lnR
decrease

Undefined or blocked

1 2, (, 3, +,−,[,4,Cl,Br 1,N, c, C,=,n,F O, S
2 c, 2, (, 3, +,−,[ 1,N, C,O,n,= Cl, 4,F, Br, S
3 c, 2, (, 3, =,4 1,N, O, C +,−,[,n, Br,Cl,F, S
4 c, 2, (, 3, C, +, −, =, [, n, 4, Cl 1,N,O,F, Br, S
5 2, (, 3, −,4,Cl 1,N, c, C, =,n O,+,[F,S, Br
6 2, (, 3, O,+,4,Cl 1,N, c, C,=,−,n [,F, Br, S
which gave most accuracy prediction of the mutagenic potentials.
SMILES-based optimal descriptors gave more accurate prediction than
optimal descriptors calculated with molecular graphs.
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