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Convenient to apply and available on the Internet, CORAL software (http://www.insilico.eu/CORAL) has been
used to build up quantitative structure–activity relationships (QSAR) for prediction of toxicity to Daphnia
magna. The QSARs developed in this study are one-variable models based on the optimal descriptors calcu-
lated with the Monte Carlo method. The toxicity has been modeled with the following representations of
the molecular structure: (i) by hydrogen-suppressed graph (HSG); (ii) by simplified molecular input line
entry system (SMILES); and (iii) by hybrid representation, i.e. the HSG together with SMILES. Four random
splits into the sub-training, calibration, and test sets were examined. The hybrid version of the representation
of the molecular structure provided the best accuracy of the prediction for the considered endpoint.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Toxicity of a compound towards Daphnia magna represents well-
known and important ecological indicator of potential environmental
hazards of chemicals [1–8]. Experimental evaluations of environmen-
tal properties (e.g. toxicity to D. magna) for all new synthetic sub-
stances which are being used in everyday life (marketing, cosmetics,
medicine, industry, etc.) become impossible owing to increasing
number of these substances. Under such circumstances, the develop-
ment of efficient quantitative structure–activity relationships (QSAR)
represents the only compelling alternative to the experiment.

European Union REACH (Registration, Evaluation and Authorisa-
tion of Chemicals) explicitly encourages the use of computational
methods for estimation of environmental parameters of all new and
existing chemicals. Obviously, QSAR will play an important role in
addressing of this task [9–14].

Recently, CORAL software has been suggested as an efficient tool
for the QSAR analysis [15]. The CORAL models represent one-
variable correlations between an endpoint and optimal descriptors.
The optimal descriptors are calculated with special coefficients related
to presence of various molecular features (molecular fragments
and physicochemical characteristics of molecules). These coefficients
(correlation weights) are obtained by the Monte Carlo method. One
can use as the representation of the molecular structure for the optimal

descriptors hydrogen-suppressed molecular graph (HSG) [16], simpli-
fied molecular input line entry system (SMILES) [17–19], or a hybrid
representation which includes both the HSG and SMILES.

The comparison of aforementioned three representations of the
molecular structure in the development of QSAR approaches devoted
to toxicity towards D. magna is the aim of the present study.

2. Methods

2.1. Data

The descriptions of organic chemicals related to 48 h D. magna-
toxicity expressed in negative decimal logarithm of the dose that
kills 50% of organisms i.e. pLC50 were taken from the literature
[1]. The data set covers range of octanol/water partition coefficient
from −2 to 8. The range of toxicity (daphnia) is from 0.46 to 10.09.
In regard to the chemical domain, the data set includes hydrocar-
bons, aliphatic alcohols, phenols, ethers, and esters; anilines,
amines, nitriles, nitroaromatics, amides, and carbamates; urea and
thiourea derivatives; iso-thiocyanates; thiols; phosphorothionate
and phosphate esters; and halogenated derivatives. The list of com-
pounds represented by CAS numbers and SMILES with their daph-
nia toxicity values are shown in Supplementary Materials.

2.2. Molecular descriptors

CORAL software can generate three kinds of optimal descriptors:
graph-based, SMILES-based, and hybrid descriptors which are calculated
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with both graph and SMILES. Accordingly, the CORAL software can gen-
erate three kinds ofmolecular graphs: the above-mentionedHSG, hydro-
gen filled graph (HFG), and graph of atomic orbitals (GAO).

The graph-based optimal descriptors are calculated as the follow-
ing:

Graph D CW Threshold;Nepoch

� �
¼ ∑CW Akð Þ þ α∑CW 0ECk

� �

þ β∑CW 1ECk

� �
þ γ∑CW 2ECk

� �

þ δ∑CW 3ECk

� �

ð1Þ

where Ak is chemical element, such as, C, N, O, etc., for HSG and
HFG; or atomic orbitals, such as 1s1, 2p3, 3 d10, etc., for GAO; 0ECk,

1

ECk, …
3ECk represents the hierarchy of the Morgan extended connec-

tivity; α, β, γ, and δ can be 1 or 0: combinations of their values gives
possibility to define various versions of the graph-based optimal de-
scriptor; CW(x) is the correlation weight of a molecular feature
(encoded by Ak or xECk).

The SMILES-based optimal descriptors are calculated as the fol-
lowing:

SMILES D CWðThreshold;NepochÞ ¼ α∑CW Skð Þ þ β∑CW SSkð Þ
þ γ∑CW SSSkð Þ þ x⋅CW NOSPð Þ
þ y⋅CWðHALOÞ þ z⋅CWðBONDÞ ð2Þ

where Sk, SSk, and SSSk are one-, two-, and three-component SMILES
attributes, respectively; the component of SMILES represents one
symbol (e.g. C, c, N, n, =, f, etc.) or two symbols which cannot be
separated (e.g. Cl, Br, @@, etc.); NOSP, HALO, and BOND are indices
calculated according to presence or absence of chemical elements:
nitrogen, oxygen, sulfur, and phosphorus (NOSP); fluorine, chlorine,

and bromine (HALO). The BOND symbolizes a mathematical
function related to the presence or absence of double (=), triple (#),
or stereo chemical bonds (@ or @@); α, β, γ, x, y, and z can be 1 or 0:
combinations of their values provide possibility to define various
versions of the SMILES-based optimal descriptor. CW(x) is the correla-
tion weight of a molecular feature (encoded by SkSkSk or xECk).

The hybrid optimal descriptors are calculated with taking into ac-
count both representations of the molecular structure by graph and
by SMILES.

Hybrid DCWðThreshold;NepochÞ ¼ SMILESDCWðThreshold;NepochÞ
þ GraphDCWðThreshold;NepochÞ ð3Þ

Threshold and Nepoch (in Eqs. (1)–(3)) are parameters of the
Monte Carlo optimization. Threshold is criterion for classification of
components of the representation of the molecular structure into
two classes: rare (noise) and active (not rare). The correlation weight
of a rare component is fixed as zero; hence rare component is not in-
volved in the building up of the model. Nepoch is the number of epochs
of the Monte Carlo optimization. Fig. 1 shows the theoretical influ-
ence of the threshold and of the number of epochs of the Monte
Carlo method optimization for the correlation coefficient between
the experimental and calculated values of an endpoint.

One can see (Fig. 1) that the increase of the threshold is accompa-
nied by decrease of the correlation coefficient between experimental
and calculated values of an endpoint for the sub-training and calibra-
tion set, whereas the correlation coefficient for the external test set
has a maximum (Threshold=2). The increase of the number of
epochs of the Monte Carlo method optimization is accompanied by

Fig. 1. Correlation coefficient between experimental and predicted values of an endpoint for the external test set as a mathematical function of the threshold and the number of
epochs of the Monte Carlo method optimization.
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increase of the correlation coefficient for the sub-training and calibra-
tion sets, but again the correlation coefficient for the test set has a
maximum (Nepoch=N*=21). Thus, the preferable model, i.e. prefer-
able Threshold and Nepoch (denoted N*) can be obtained from analysis
of the surface

R2
test ¼ F Threshold;NepochÞ

�
ð4Þ

The principles of CORAL software are the following:

1. Molecular graph and/or SMILES are representations of the molecu-
lar structure.

2. These representations (by graph or SMILES) are not identical.
3. Significance of various components of these representations de-

pends on endpoint, and on split of substances into the training
and test sets. For instance, SMILES attributes which are important
for QSAR model of carcinogenic potential can be uninformative
for QSAR model of toxicity towards D. magna.

4. Correlation weights of the molecular features which produce satis-
factory correlation between optimal descriptor (Eq. (1), or (2), or
(3)) and an endpoint can also give the satisfactory correlation for
external test set.

5. Predictability of a selected version of the optimal descriptor should
be checkedwith several random splits into the training and test sets.

3. Results and discussion

Table 1 contains statistical quality of models for toxicity towards
D. magna. The versions of descriptorsGraphDCW(Threshold,Nepoch) cal-
culated here with Eq. (1) (HSG) are the following: α=0, β=1, γ=1,
and δ=0. The SMILES-based descriptors SMILESDCW(Threshold,Nepoch)
applied in our work with Eq. (2) are as follows: α=1, β=1, γ=0,
x=0, y=0, and z=1. Upon the analysis of all obtained data one
can see from Table 1 that hybrid version of the descriptors gives im-
provement of the accuracy of the model (Table 1).

Table 2 contains descriptions of the statistical quality of models for
toxicity towards D. magna which are built up with the same hybrid
descriptor for three random splits. The balance of correlations with
ideal slopes has been used in the Monte Carlo method optimization.

The aforementioned models are the following (n is the number of
compounds in a set; r is correlation coefficient; q2 and r2pred are
leave-one-out correlation coefficients; s is standard error of estima-
tion; F is Fischer F-ratio; novel validation metrics R2

m [20]: R2
m is

mean of Rm
2 and R′m

2 values and ΔRm2 is the absolute difference

Table 1
Comparison of predictability of optimal descriptors calculated with HSG, SMILES, and
optimal descriptors which are calculated with both HSG and SMILES: the case of split
taken from the literature [1]. Best models are indicated by bold.

Threshold Probe 1 Probe 2 Probe 3 Average Dispersion

HSG
R2

test 1 0.6481 0.6455 0.6523 0.6486 0.0028
2 0.6947 0.6928 0.6854 0.6910 0.0040
3 0.6727 0.6746 0.6735 0.6736 0.0008
4 0.6584 0.6521 0.6621 0.6575 0.0041
5 0.6545 0.6535 0.6522 0.6534 0.0009
6 0.6461 0.6436 0.6424 0.6440 0.0015
7 0.6202 0.6182 0.6204 0.6196 0.0010
N* 1 10 10 10 10.00 0.00
2 13 14 14 13.67 0.47
3 16 15 16 15.67 0.47
4 16 15 17 16.00 0.82
5 17 16 18 17.00 0.82
6 17 18 17 17.33 0.47
7 18 18 16 17.33 0.94

SMILES
R2

test 1 0.6794 0.6814 0.6795 0.6801 0.0009
2 0.6996 0.6979 0.6950 0.6975 0.0019
3 0.6674 0.6633 0.6655 0.6654 0.0017
4 0.6617 0.6567 0.6579 0.6588 0.0021
5 0.6538 0.6503 0.6512 0.6518 0.0015
6 0.6471 0.6470 0.6474 0.6472 0.0001
7 0.6353 0.6434 0.6380 0.6389 0.0034
N* 1 14 16 14 14.67 0.94
2 16 16 16 16.00 0.00
3 15 16 15 15.33 0.47
4 16 16 18 16.67 0.94
5 15 16 17 16.00 0.82
6 16 16 15 15.67 0.47
7 17 16 17 16.67 0.47

HSG and SMILES
R2

test 1 0.7439 0.7412 0.7362 0.7404 0.0032
2 0.7716 0.7768 0.7732 0.7739 0.0022
3 0.7517 0.7530 0.7539 0.7529 0.0009
4 0.7328 0.7353 0.7354 0.7345 0.0012
5 0.7224 0.7193 0.7204 0.7207 0.0013
6 0.7125 0.7113 0.7142 0.7127 0.0012
7 0.7057 0.6982 0.7050 0.7030 0.0033
N* 1 14 14 14 14.00 0.00
2 17 18 16 17.00 0.82
3 16 15 15 15.33 0.47
4 16 17 18 17.00 0.82
5 15 16 17 16.00 0.82
6 19 17 17 17.67 0.94
7 17 18 18 17.67 0.47

Table 2
Statistical quality of models calculated with optimal descriptors calculated with both
HSG and SMILES for three random splits into sub-training, calibration, and test sets.
Best models are indicated by bold.

Threshold Probe 1 Probe 2 Probe 3 Average Dispersion

SPLIT 1
R2

test 1 0.7620 0.7617 0.7595 0.7611 0.0011
2 0.7643 0.7661 0.7668 0.7657 0.0011
3 0.7605 0.7605 0.7581 0.7597 0.0012
4 0.7511 0.7461 0.7508 0.7493 0.0023
5 0.7562 0.7557 0.7500 0.7540 0.0028
6 0.7464 0.7469 0.7445 0.7459 0.0010
7 0.7286 0.7345 0.7292 0.7307 0.0026
N* 1 13 12 14 13.00 0.82
2 12 13 13 12.67 0.47
3 15 14 13 14.00 0.82
4 15 13 14 14.00 0.82
5 14 15 16 15.00 0.82
6 15 15 15 15.00 0.00
7 15 15 15 15.00 0.00

SPLIT 2
R2

test 1 0.7754 0.7805 0.7744 0.7767 0.0027
2 0.7792 0.7762 0.7766 0.7774 0.0013
3 0.7833 0.7821 0.7826 0.7827 0.0005
4 0.7804 0.7822 0.7819 0.7815 0.0008
5 0.7699 0.7674 0.7717 0.7696 0.0018
6 0.7804 0.7713 0.7798 0.7771 0.0042
7 0.7686 0.7704 0.7725 0.7705 0.0016
N* 1 11 13 12 12.00 0.82
2 11 12 13 12.00 0.82
3 12 11 12 11.67 0.47
4 11 12 12 11.67 0.47
5 18 13 13 14.67 2.36
6 19 20 18 19.00 0.82
7 18 16 18 17.33 0.94

SPLIT 3
R2

test 1 0.8120 0.8143 0.8138 0.8134 0.0010
2 0.8157 0.8139 0.8188 0.8162 0.0020
3 0.8158 0.8175 0.8204 0.8179 0.0019
4 0.8028 0.8023 0.8045 0.8032 0.0009
5 0.7932 0.7918 0.7936 0.7929 0.0008
6 0.7758 0.7829 0.7818 0.7802 0.0031
7 0.7761 0.7773 0.7722 0.7752 0.0022
N* 1 12 13 12 12.33 0.47
2 12 12 14 12.67 0.94
3 13 13 12 12.67 0.47
4 13 12 12 12.33 0.47
5 14 14 13 13.67 0.47
6 12 12 13 12.33 0.47

7 13 15 14 14.00 0.82
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between Rm
2 and R′m

2 [20]. R2
m should be more than 0.5 and ΔRm2 should

be smaller than 0.2):

Split from Ref. [1]

pLD50 ¼ 1:6993 �0:0209ð Þ þ 0:0888 �0:0005ð Þ � DCW 2;17ð Þ ð5Þ

n ¼ 107; r2 ¼ 0:7251; q2 ¼ 0:7145; s ¼ 0:889; F
¼ 277 sub� training setð Þ

n ¼ 115; r2 ¼ 0:8030; r2pred ¼ 0:7958; s ¼ 0:878; F
¼ 461 calibration setð Þ

n ¼ 75; r2 ¼ 0:7675; r2pred ¼ 0:7547; s ¼ 0:905; F ¼ 241 test setð Þ

Rm
2 ¼ 0:7212; R′m

2 ¼ 0:5142;¼ 0:6177; ΔRm
2 ¼ 0:2050

Random split 1

pLD50 ¼ 1:5779 �0:0164ð Þ þ 0:0774 �0:0004ð Þ � DCW 2;13ð Þ ð6Þ

n ¼ 149; r2 ¼ 0:7006; q2 ¼ 0:6920; s ¼ 1:04; F
¼ 344 sub� training setð Þ

n ¼ 59; r2 ¼ 0:8855; r2pred ¼ 0:8754; s ¼ 0:600; F
¼ 441 calibration setð Þ

n ¼ 89; r2 ¼ 0:7680; r2pred ¼ 0:7564; s ¼ 0:878; F ¼ 288 test setð Þ

Rm
2 ¼ 0:7413;R′m

2 ¼ 0:6109;R2
m ¼ 0:6761; ΔRm

2 ¼ 0:1304

Random split 2

pLD50 ¼ 1:9378 �0:0184ð Þ þ 0:0667 �0:0004ð Þ � DCW 3;12ð Þ ð7Þ

n ¼ 138; r2 ¼ 0:6506; q2 ¼ 0:6400; s ¼ 1:06; F
¼ 253 sub� training setð Þ

n ¼ 82; r2 ¼ 0:8493; r2pred ¼ 0:8388; s ¼ 0:745; F
¼ 451 calibration setð Þ

n ¼ 77; r2 ¼ 0:7838; r2pred ¼ 0:7705; s ¼ 0:865; F ¼ 272 test setð Þ

Rm
2 ¼ 0:7310;R′m

2 ¼ 0:5342;R2
m ¼ 0:6326; ΔRm

2 ¼ 0:1968

Random split 3

pLD50 ¼ 1:9381 �0:0162ð Þ þ 0:0744 �0:0003ð Þ � DCW 3;13ð Þ ð8Þ

n ¼ 152; r2 ¼ 0:6885; q2 ¼ 0:6796; s ¼ 1:03; F
¼ 332 sub� training setð Þ

n ¼ 57; r2 ¼ 0:8389; r2pred ¼ 0:8257; s ¼ 0:808; F
¼ 286 calibration setð Þ

n ¼ 88; r2 ¼ 0:8138; r2pred ¼ 0:8004; s ¼ 0:765; F ¼ 376 test setð Þ

Rm
2 ¼ 0:7308; R′m

2 ¼ 0:5434;R2
m ¼ 0:6371; ΔRm

2 ¼ 0:1875

Fig. 2 displays the model of pLD50 calculated with Eq. (5).
There have been earlier studies related to our work. Statistical

characteristics of the model for toxicity towards D. magna described

in the literature [1] are the following: n=222, r2=0.695 (training
set), and n=75, r2pred=0.741, Rm2 =0.707 (test set). Thus, Eq. (5)
can be estimated as at least equivalent to the above-mentioned
model [1]. Models calculated with Eq. (6)–(8) also have good statistical
quality. Thus the predictions which are calculated with the CORAL
software can be estimated as robust.

According to REACH [21], the determination of whether a QSAR
result may be used to replace an experimental test result can be bro-
ken down into the following three main steps:

1. an evaluation of the scientific validity (relevance and reliability) of
the model;

2. an assessment of the applicability of the model to the chemical of
interest and the reliability of the individual model prediction;

3. an assessment of the adequacy of the information for making the
regulatory decision, including an assessment of completeness, i.e.
whether the information is sufficient to make the regulatory deci-
sion, and if not, what additional (experimental) information is
needed.

To be used as a full replacement of an experimental test, all three con-
ditions need to be fulfilled. Even in cases where some information ele-
ments are missing, QSAR results may still be used in the research aspect.

The evaluation of the scientific validity (relevance and reliability)
of the CORAL model can be done from probabilistic point of view.
Each character of SMILES is a part of information on the molecular
structure. Each fact related to the molecular structure can be informa-
tive or uninformative for a given model. Consequently, each run of
the CORAL with different threshold and number of epochs of the
Monte Carlo optimization represents typical experiment. The result
can be positive (good model) or negative (poor model). An additional
checking up of a good model is the reproducibility of the statistical
quality in series of runs of the Monte Carlo optimization.

The applicability domain can be defined on basis of the analysis of
correlation weights of molecular attributes extracted from SMILES and
graph: there are attributes with stable positive values and attributes
with stable negative values of their correlation weights. It is also possi-
ble the presence of attributes which are characterized by mixed values
of the correlation weights in the series of the optimization (i.e. both
positive and negative values of the correlation weights). Finally, for a
CORAL model with threshold more than zero, there are rare attributes
which have correlation weights equal to zero. We deem that a first ap-
proximation of criterion for selection of the compoundwhich falls in the

Fig. 2. Correlation between experimental and predicted toxicity towards Daphnia
magna calculated using Eq. (5).
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applicability domain is the presence of attributeswith stable positive or
stable negative values of the correlation weights in the series of the
Monte Carlo optimization, because their influence is apparent: positive
correlation weights are promoters of the increase and negative correla-
tion weights are promoters of decrease of an endpoint. The list of stable
promoters (increase or decrease)may be used to formulatemechanistic
interpretation of the endpoint.

Most probably, the CORAL models cannot be used as a full replace-
ment of an experimental test if data set used for the building up those
models is not large. Even in the case of large data set, precision of the
CORAL model will be worse than precision of the experimental mea-
surement. However, the precision of the CORAL model can be reliably
estimated by means of performance of series of probes with different
splits into the sub-training, calibration, and test sets. Taking into ac-
count all aforementioned circumstances, one can conclude that the
CORAL model can be useful for praxis.

Supplementary materials section contains details of the three
splits into the sub-training, calibration, and test sets.

Conclusions

CORAL software is able to be an efficient tool to build up a model
toxicity towards D. magna for the set of diverse substances. The pre-
dictive potential of the applied approach was tested with four ran-
dom splits into the sub-training, calibration, and test sets. The
best results were obtained using the hybrid version of the represen-
tation of the molecular structure i.e. taking into account representa-
tion of the molecular structure by both molecular graph and
SMILES.
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