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Predicting thermal conductivity of nanomaterials by correlation weighting
technological attributes codes
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Abstract

A number of characteristics that include atom compositions, conditions of synthesis and the features of nanomaterials related to their
commercial manufacturing have been examined as possible descriptors of a given nanostructure. Using an optimization procedure linked to the
Monte Carlo method the special correlation weights have been calculated for each descriptor. A new application of the correlation weights
predictive model for the thermal conductivity of nanomaterials has been developed. Statistical characteristics of the model are as follows: n=43,
r2=0.8687, s=5.14 W/m/K, F=271 (training set); n=15, r2=0.8598, s=4.91 W/m/K, F=80 (test set).
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Quantitative Structure–Property/Activity Relationships
(QSPR/QSAR) provide efficient tools for predicting the physico-
chemical properties and/or biological activities of organic [1–5],
inorganic, and coordination compounds [6–8], aswell as polymers
[9,10]. The QSPR/QSARmodeling is based on a molecular graph
that is an elucidation of molecular structure. Also, the alternative
molecular graph represented by the Simplified Molecular Input
Line Entry System (SMILES) notation has been tested recently
[11,12]. The essence of the SMILES approach involves encoding
the molecular structure using a set of special symbols that contain
information about the presence of different chemical elements and
various features of molecular structure, such as cis- and trans-
isomerism, double and triple covalent bonds, etc.

In recent years, a new category of substances the so-called
nanostructures has received a lot of attention both from the basic
science as well as the industry. However, studies on the
environmental effects of such structures are scarce and due to
the fact that their fabrication increases every year such effects
could accumulate and propagate. Therefore the development of
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predictive, reliable methods for their properties/activity is an
important and urgent aim. Such task provides various
challenges since the simple elucidation of the structure of
nanomaterials by an analogy to a molecular graph has not been
yet successfully accomplished. In fact, nanomaterials have
complex associations of atoms involving more than many
hundreds or even thousands of units [13].

The thermal properties of nanomaterials in general [14,15]
and their thermal conductivity in particular [16] are essential
characteristics from the point of view of nanotechnology. The
present study aims to define a list of features of nanomaterials,
similar to the graph of theoretical attributes of molecular
structure, such as the presence of different chemical elements,
single, double, and triple covalent bonds, etc. In the case of
nanomaterials the role of their attributes, which could be used in
constructing a thermal conductivity model may be as follows: to
provide information on atom composition, temperature of
synthesis, and status of the final product (ceramic, single
crystal, glass, bulk and film).

2. Methods

The data on thermal conductivity of nanomaterials used in
the present study was taken from the database available via the
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Table 1
Experimental and calculated thermal conductivity values (Eq. (3)) for the
training and test sets

No. Codes of the attributes (CAk) of
nanomaterials

DCW Experimental Calculated

Training set
1 Al,N,BULK,CER,%A 1.00386 30.10 30.45
2 Al,N,BULK,CER,%G 1.00104 20.06 19.16
3 Al,Al,O,O,O,BULK,SIC 1.00838 50.00 48.55
4 Al,Al,O,O,O,BULK,CER,%O 0.99828 5.43 8.11
5 Al,Al,O,O,O,BULK,CER,%B 1.00163 22.78 21.53
6 Al,Al,O,O,O,BULK,CER,%C 1.00023 19.64 15.92
7 Al,Al,O,O,O,BULK,CER,%E 0.99903 10.66 11.12
8 Al,Al,O,O,O,BULK,CER,%F 0.99939 14.63 12.56
9 Al,Al,O,O,O,BULK,CER,%I 0.99868 6.69 9.72
10 Al,Al,O,O,O,BULK,CER,%K 0.99833 6.27 8.31
11 Al,Al,O,O,O,BULK,SIC,%A 1.00490 43.05 34.62
12 Al,Al,O,O,O,BULK,SIC,%D 1.00209 19.65 23.37
13 Al,Al,O,O,O,BULK,SIC,%I 1.00081 12.12 18.24
14 B,N,BULK,CER,%D 1.00402 28.72 31.09
15 B,N,BULK,CER,%K 1.00238 26.63 24.53
16 Cr,B,B,BULK,%A 1.00277 26.12 26.09
17 Mo,Si,Si,BULK,CER,%B 1.00587 53.92 38.50
18 Mo,Si,Si,BULK,CER,%F 1.00362 22.15 29.49
19 Mo,Si,Si,BULK,CER,%G 1.00419 23.83 31.77
20 Mo,Si,Si,BULK,CER,%L 1.00051 17.14 17.04
21 Al,Al,Al,Al,Al,Al,O,O,O,

O,O,O,O,O,O,Si,Si,O,O,
O,O,BULK,CER,%B

0.99985 6.06 14.40

22 Al,Al,Al,Al,Al,Al,O,O,O,
O,O,O,O,O,O,Si,Si,O,O,
O,O,BULK,CER,%E

0.99725 4.60 3.99

23 Al,Al,Al,Al,Al,Al,O,O,O,
O,O,O,O,O,O,Si,Si,O,O,
O,O,BULK,CER,%G

0.99818 4.18 7.71

24 Al,Al,Al,Al,Al,Al,O,O,O,
O,O,O,O,O,O,Si,Si,O,O,
O,O,BULK,CER,%I

0.99691 3.97 2.63

25 Al,Al,Al,Al,Al,Al,O,O,O,
O,O,O,O,O,O,Si,Si,O,O,
O,O,BULK,CER,%M

0.99554 3.76 -2.85

26 Al,Al,Al,Al,Al,Al,O,O,O,
O,O,O,O,O,O,Si,Si,O,O,
O,O,BULK,CER,%O

0.99650 3.76 0.99

27 Si,C,FILM,CUB,%G 1.00115 27.14 19.60
28 Si,C,FILM,CUB,%I 0.99987 21.32 14.48
29 Si,C,FILM,CUB,%M 0.99850 2.47 9.00
30 Si,C,FILM,CUB,%N 1.00488 34.57 34.54
31 Si,C,FILM,CUB,%P 0.99847 1.34 8.88
32 Si,O,O,BULK,CER,%C 0.99790 1.04 6.59
33 Si,O,O,BULK,CER,%I 0.99635 1.67 0.39
34 Si,O,O,BULK,CER,%P 0.99496 2.51 -5.18
35 Si,O,O,BULK,GLS,%A 0.99862 1.38 9.48
36 Si,O,O,BULK,GLS,%B 0.99748 0.59 4.91
37 Si,O,O,BULK,GLS,%B 0.99748 0.88 4.91
38 Si,O,O,BULK,GLS,%C 0.99610 1.28 -0.61
39 Si,O,O,BULK,GLS,%D 0.99583 1.36 -1.69
40 Si,O,O,BULK,GLS,%D 0.99583 1.43 -1.69
41 Si,O,O,BULK,GLS,%F 0.99526 1.62 -3.97
42 Si,O,O,BULK,GLS,%G 0.99582 1.72 -1.73
43 Si,O,O,BULK,GLS,%H 0.99669 1.80 1.75

Validation set
1 Al,N,BULK,CER,%E 1.00011 22.15 15.44
2 Al,Al,O,O,O,BULK,CER,%A 1.00277 25.08 26.09
3 Al,Al,O,O,O,BULK,CER,%D 0.99996 15.47 14.84
4 Al,Al,O,O,O,BULK,CER,%G 0.99996 8.99 14.84
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Internet [17]. The twenty attributes of nanomaterials have been
selected. These attributes and their codes are as follows:

1) Room temperature, 80, 100, or 150 is %A;
2) 200, or 250 is %B;
3) 273, 300, 315, or 350 is %D;
4) 400 or 425 is %E;
5) 500 or 540 is %F;
6) 600 or 650 is %G;
7) 700 is %H;
8) 800 or 875 is %I;
9) 1000 is %K;

10) 1100 is %L;
11) 1200 or 1250 is %M;
12) 1300 or 1327 is %N;
13) 1400 is %O;
14) 1530 or 1600 is %P.

The temperature is expressed in centigrade degree (Celsius).
The second category of the attributes that we considered is
defined by the status of the nanomaterials as commercial
products. These are as follows:

15) ceramic is CER;
16) Single crystal is SIC;
17) nanomaterial produced in the form of bulk is BULK;
18) nanomaterial produced in the form of film is FILM;
19) nanomaterial produced in cubic form is CUB, and
20) nanomaterial produced in glass form is GLS.

These codes can be converted to the set of SMILES-like
representations of the nanomaterials under considerations,
which are shown in Table 1. It is to be noted that a comma
has also been used as an attribute of the nanomaterial, since the
number of commas in different lines are not the same.

The optimal descriptor used in the present study is defined as

DCW ¼ j
N

k¼1
CWðCAkÞ ð1Þ

where CAk is the code of the k-th attribute; CW(CAk) is the
correlation weight of the CAk; and N is the number of attributes
for a given nanomaterial.

Using the Monte Carlo optimization [3–10,18] for the
training set one can calculate the values of all CW(CAk), which
produce large values of correlation coefficients between thermal
conductivity and the DCW. The numerical data on the CW
(CAk) obtained using Eq. (1) is then used to calculate DCW for
each nanomaterial from the training set. An application of the
Least Squares method allows to define the thermal conductivity:

TC ¼ C0 þ C1⁎DCW ð2Þ

The predictive ability of Eq. (2) must be validated with
nanomaterials of an external validation set. In the present study,
the separation of the considered species into training and
validation sets has been done randomly, but applying two
constraints: (1) all attributes must be presented in the training
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Fig. 1. Plot of experimental versus calculated values of thermal conductivity for
the training set.

Table 1 (continued )

No. Codes of the attributes (CAk) of
nanomaterials

DCW Experimental Calculated

Validation set
5 Al,Al,O,O,O,BULK,CER,%M 0.99731 5.85 4.23
6 B,N,BULK,CER,%H 1.00489 27.00 34.58
7 Mo,Si,Si,BULK,CER,%E 1.00326 30.93 28.05
8 Mo,Si,Si,BULK,CER,%I 1.00291 19.23 26.65
9 Al,Al,Al,Al,Al,Al,O,O,O,

O,O,O,O,O,O,Si,Si,O,O,O,
O,BULK,CER,%C

0.99845 5.43 8.80

10 Al,Al,Al,Al,Al,Al,O,O,O,
O,O,O,O,O,O,Si,Si,O,O,O,
O,BULK,CER,%K

0.99655 3.76 1.19

11 Si,O,O,BULK,CER,%E 0.99670 1.25 1.79
12 Si,O,O,BULK,CER,%M 0.99499 2.09 -5.06
13 Si,O,O,BULK,GLS,%B 0.99748 0.67 4.91
14 Si,O,O,BULK,GLS,%D 0.99583 1.32 -1.69
15 Si,O,O,BULK,GLS,%E 0.99490 1.50 -5.42
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set; and (2) the diapasons of the thermal conductivity values for
training and validation sets must be similar.
Fig. 2. Plot of experimental versus calculated values of thermal conductivity for
the validation set.
3. Results and discussion

Statistical characteristics of the models (obtained in three runs of
Monte Carlo optimization) similar to that in Eq. (2) are statistically
characterized by: first probe Rt

2 =0.8667, Rv
2=0.8576; second probe

Rt
2 =0.8672, Rv

2=0.8579; and third probe Rt
2 =0.8672, Rv

2=0.8598,
where Rt and Rv are the correlation coefficients between thermal
conductivity and the DCW for the training and validation sets,
respectively. Thus, the statistical quality of the models based on the
optimal descriptor calculated with Eq. (1) is reproduced and the statistical
quality of these models is quite good for both the training and the
validation sets. The numerical values of the CW(CAk) are as follows:

CW(Si)=1.0019472, CW(SIC)=1.0052753, CW(O)=0.9981051,
CW(Mo)=1.0008205, CW(N)=0.9986408, CW(GLS)=1.0013297,
CW(Cr)=0.9917891, CW(FILM)=0.9965605, CW(C)=1.0022444,
CW(Al)=1.0030147, CW(B)=1.0059944, CW(CUB)=1.0064568,
CW(BULK) = 1.0022868, CW(CER) = 1.0031430, CW(,)
=1.0000785, CW(%P)=0.9910215, CW(%O)=0.9920073, CW(%
N)=0.9973768, CW(%M)=0.9910473, CW(%L)=0.9900339, CW
(%K)=0.9920577, CW(%I)=0.9924094, CW(%H)=0.9945386, CW
(%G)=0.9936741, CW(%F)=0.9931158, CW(%E)=0.9927537, CW
(%D)=0.9936795, CW(%C)=0.9939484, CW(%B)=0.9953345, and
CW(%A)=0.9964697.

Using the CWs for the first nanomaterial from Table 1 one can calculate
the DCW using the following relationship: DCW=CW(Al)⁎CW(,)⁎CW
(N)⁎CW(,)⁎CW(BULK)⁎CW(,)⁎CW(CER)⁎CW(,)⁎CW(%A)=
1.0030147⁎1.0000785⁎0.9986408⁎1.0000785⁎1.0022868⁎1.0000785
⁎1.0031430⁎1.0000785⁎0.9964697=1.0038572≈1.00386.

The model calculated with the above numerical data for the CW
(ACk) is as follows:

TC ðW=m=KÞ ¼ �3988:1þ 4003:1⁎DCW

n=43, r2=0.8667, s=5.18 (W/m/K), F=271 (training set)
n=15, r2=0.8576, s=4.99 (W/m/K), F=78 (test set)

The experimental and calculated values (Eq. (3)) of thermal
conductivity for the training and validation sets are shown in Table 1.
Negative values of the thermal conductivity model can be
considered as being close to zero. Graphically this model is represented
for the training and test sets in Figs. 1 and 2, respectively.

It should be noted that the correlation between thermal conductivity
and the molecular structure of “classical” organic compounds is not
transparent and straightforward. A model for thermal conductivity
described in Ref. [19] is based on nine descriptors (nine-variable
correlation). Most of these descriptors have quantum chemical origin.
At present an approach that allows for the representation of information
concerning molecular structure of nanomaterials is under development.
However, the calculation of quantum chemical descriptors for
nanomaterials is hardly possible. Moreover, topological (2D) and
stereo chemical (3D) descriptors are also unavailable for nanostruc-
tures. Most probably quantum chemical predictions for nanomaterials
will remain scarce in the foreseeable future.

Although our study does not include molecular parameters obtained
from the quantum chemical calculations, the descriptor calculated with
Eq. (1) could be redefined in order to reflect the influence of any
available parameters (numerical, yes/no-characteristics, conditions of
manufacturing, etc.) of nanomaterials for further modeling of their
physicochemical and biochemical properties.
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We conclude that the descriptor calculated using Eq. (1), being
optimized with forty three nanomaterials of the training set, gives a
reasonably good prediction of the thermal conductivity for fifteen
nanomaterials of the external validation set.
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